书 名 | 电机内的电磁场 | 作 者 | 汤蕴璆 |
---|---|---|---|
ISBN | 15031376 | 出版社 | 科学出版社 |
目录
序言
绪论
第一章 恒定磁场的基本理论
第二章 无界空间中的恒定磁场
第三章 具有铁磁边界时恒定磁场的解法(Ⅰ)——镜象法
第四章 具有铁磁边界时恒定磁场的解法(Ⅱ)——直接求解拉氏方程和泊松方程
第五章 用保角变换法解二维恒定无旋磁场
第六章 恒定磁场的图解法
第七章 恒定磁场的数值解法
第八章 时变电磁场的基本理论
第九章 正弦电磁场
第十章 电磁场的暂态
第十一章 电磁力
第十二章 汽轮发电机的端部磁场
附录一 梯度、散度、旋度和拉普拉斯算符在正交曲线坐标系中的表达式
附录二 标量磁位和向量磁位解答的唯一性
附录三 椭圆积分和雅可比椭圆函数
附录四 矩阵
附录五 几个常用程序 2100433B
该书是研究电机内电磁场问题的一本专著.书中系统地介绍了恒定磁场和时变电磁场的基本方程及其解法,并用电机内的一系列典型问题说明其应用.书中收入了近四十年来国外有关电机内电磁场问题的主要研究成果,同时也反映了作者近年来的研究成果.
全书大体上分成:恒定磁场的基本理论和解析计算;恒定磁场的数值计算;时变电磁场的基本理论和解析计算;电磁力;汽轮发电机的端部磁场等部分.书末列有五个附录.
该书可供高等工科院校电机系的研究生、教师和从事电机设计、研究的工程技术人员阅读、参考.
体对来自导线、电缆、元部件、电路或系统等外部的干扰电磁波和内部电磁波均起着吸收能量(涡流损耗)、反射能量(电磁波在体上的界面反射)和抵消能量(电磁感应在层上产生反向电磁场,可抵消部分干扰电磁波)的作用...
三相交流电动机里的旋转磁场是这样产生的:在三相对称绕组(三组完全相同的线圈、在电机里相互相差120°电角度安放)里通入三相交流电(每相相位差120°电角度),这就产生了旋转磁场。 形象的说:...
发电机一般在机内可能产生外部电晕的部位有:①线棒出槽口处。绕组出槽口处属典型的套管型结构,槽口电场非常集中,是最易产生电晕的地方。②铁芯段通风沟处。通风槽钢处属尖锐边缘,易造成电场局部不均匀。③线棒表...
针对开关磁阻电机的设计对AN SY S进行了二次开发,利用AN SY S提供的APDL语言和U IDL语言,形成能对AN SY S建模分析过程进行控制的开关磁阻电机电磁场分析专用软件包;软件从输入电机参数到输出分析结果都具有良好的中文界面,对AN SY S不熟悉的用户也能方便地进行操作。同时由于该软件可进行重复建模分析,因而提高了效率。
电磁场的保角变换正文
数学上规定复平面和复平面之间的变换=()是导数′()厵0的各点处是保角变换,它是求解二维电磁场问题的一种有力工具。例如两个平行的柱形电极,当长度远大于间距从而可以忽略柱体的末端效应时,就可近似为二维问题。保角变换可应用于:静电、静磁问题,包括传输线(即横电磁场)问题;具有复杂边界的导波系统问题;以及电磁场的反演问题。
静电、静磁问题的应用甚广,在电源或磁源以外的区域,二维问题的电场强度或磁场强度等于某一静势函数的梯度,后者满足二维拉普拉斯方程,其解称为(圆)调和函数,记为(,),则
设复变数=+j,则根据已知的(,),总可以找到另一个调和函数=(,),构成解析函数
ω(z)=u+jv
z=x+jy
称和为共轭函数,为复势函数。可以证明也满足二维拉普拉斯方程并且在复平面上的等值线是两簇互相正交的曲线。若选其中的一簇为等势线,则另一簇就代表力线(电力线、磁力线),相应地称这两簇曲线所对应的函数为势函数和流函数(通量函数)。
电磁场的保角变换 若能找到两个共轭函数,其中一个函数的等值线恰好和所研究的电极边界重合,则另一个函数的等值线即代表由电极发出的电力线。因而,根据电力线的流函数就可以计算出电极表面所带的电荷量,从而可以计算场分布和电容量等。例如平板电容器二维边缘场的分析(图1a)。设两极板的电位分别为±1伏,间距为2(长度单位),置于-平面中(=+j),根据对称性,只需分析上半平面(>0)的场。利用解析函数
的保角变换(=+j),使-平面上由点、、连成的多角形变换成以点′、′、′连线为界的上半-平面(图1b)。已知后者的复势函数为
故平板电容器的复势函数满足关系式
据此可得出在-平面内的等势线(=常数)和电力线(=常数)的曲线方程。
某些边界形状较复杂的导波系统,经保角变换可变换成一个较易处理的简单边界形状。例如利用波导的电磁场解描述沟槽形波导(图2)的电磁场时就需要用保角变换。
电磁场的保角变换 在电磁场反演问题中,由已知远区场推算电磁场源的距离、方向和形状时,可采用保角变换,将已知二维闭合曲线的外域变换成单位圆的外域,并利用变换函数以及远区场两者的劳伦茨级数展开式的系数关系,可以得出解的低频估计。
在具体问题中,根据预给的势函数或流函数,去寻找合适的共轭函数并不容易。对于场域具有多角形边界的问题,施瓦茨变换是一种很有用的方法。它把一个复平面上由实轴和无限大的圆弧所围成的上半平面变换到另一复平面上的多角形内域,或反之。对于除了平角和零角之外只含一、二个正角的多角形,施瓦茨变换是初等解析函数;当正角增加到三、四个,变换与椭圆积分及椭圆函数有关。椭圆函数属于双周期解析函数,常应用于分析带状线等特种截面传输线。
工频电磁场(power frequency electromagnetic field)是由50~60Hz动力电系统产生的电磁场,工频是指其工作频率,它是由各种电压等级的输电线及各种用电器所产生的一种频率为50Hz(美国、加拿大等为60Hz)的极低频电磁场,其波长达6000km。工频电磁场为感应场,该区域内的电场与磁场无固定关系,且分别与人体耦合,在人体中产生感应电流。
电磁场电磁波
电磁场由近及远的扰动的传播形成电磁波,随时间变化着的电磁场。时变电磁场与静态的电场和磁场有显著的差别,出现一些由于时变而产生的效应。这些效应有重要的应用 ,并推动了电工技术的发展。
因磁通量变化产生感应电动势的现象:闭合电路的一部分导体在磁场里做切割磁力线的运动时,导体中就会产生电流,这种现象叫电磁感应定律 。
1820年H.C.奥斯特发现电流磁效应后,许多物理学家便试图寻找它的逆效应,提出了磁能否产生电,磁能否对电作用的问题,1822年D.F.J.阿喇戈和A.von洪堡在测量地磁强度时,偶然发现金属对附近磁针的振荡有阻尼作用。1824年,阿喇戈根据这个现象做了铜盘实验,发现转动的铜盘会带动上方自由悬挂的磁针旋转,但磁针的旋转与铜盘不同步,稍滞后。电磁阻尼和电磁驱动是最早发现的电磁感应现象,但由于没有直接表现为感应电流,当时未能予以说明 。
感应电流产生的条件
① 电路是闭合且通着的;
②穿过闭合电路的磁通量发生变化;(如果缺少一个条件,就不会有感应电流产生) .
M.法拉第提出的电磁感应定律表明,磁场的变化要产生电场。这个电场与来源于库仑定律的电场不同,它可以推动电流在闭合导体回路中流动,即其环路积分可以不为零,成为感应电动势。现代大量应用的电力设备和发电机、变压器等都与电 磁感应作用有紧密联系。由于这个作用。时变场中的大块导体内将产生涡流及趋肤效应。电工中感应加热、表面淬火、电磁屏蔽等,都是这些现象的直接应用。
磁感应现象是电磁学中最重大的发现之一,它揭示了电、磁现象之间的相互联系。法拉第电磁感应定律的重要意义在于,一方面,依据电磁感应的原理,人们制造出了发电机,电能的大规模生产和远距离输送成为可能;另一方面,电磁感应现象在电工技术、电子技术以及电磁测量等方面都有广泛的应用 。