中文名 | 电极电位法测井 | 外文名 | electrode potential logging |
---|---|---|---|
学 科 | 地球物理勘探 | 特 征 | 井中测量电子导电矿体电极电位 |
优 势 | 区分致密矿层与浸染状矿层 | 应 用 | 精确划分导体矿层、估计矿层贫富 |
当金属浸在纯水中时,极性很强的水分子将与金属的离子相吸引而发生水化作用,结果使一部分金属离子与金属晶格中其它离子间的键力减弱,甚至离开金属表面进入水中。金属正离子进入水溶液,剩下的负离子则留在金属表面,从而使金属带负电。由于静电吸引作用,进入水中的金属正离子将大部分聚集在金属表面附近。与此同时,带正电的水相对金属离子有排斥作用,它将阻碍金属离子继续进入水相,已溶于水中的正离子受金属负电荷吸引也可再沉淀到金属表面。当这种溶解和沉淀的速度相等时,便达到动态平衡,产生稳定的电动势,即电极电位。
金属与溶液间的电极电位的大小和符号,取决于金属的种类和溶液的性质,以及溶液中金属离子的浓度等。当金属浸在含有该金属离子的盐溶液中,由于溶液中存在该金属离子,使离子沉淀到金属的过程加快,因而在另一种电位下建立平衡。若金属离子很容易进入溶液,则该金属表面仍带负电,只是比纯水中所带的负电少;若金属离子进入溶液不易,溶液中已存在的正离子向金属沉淀的速度可能一开始就超过由金属进入溶液的速度,因而金属带正电。各种不同的金属都有一定的电极电位,下表为常见金属相对于氢电极的电极电位。可见贵金属相对于氢电极的电极电位为正值,而一般非贵金属的电极电位则为负值。
金属 |
在溶液中的阳离子 |
电极电位(V) |
金属 |
在溶液中的阳离子 |
电极电位(V) |
铝 |
Al |
-1.66 |
铜 |
Cu |
0.34 |
锰 |
Mn |
-1.05 |
银 |
Ag |
0.799 |
锌 |
Zn |
-0.76 |
汞 |
Hg |
0.798 |
铁 |
Fe |
-0.44 |
金 |
Au |
1.7 |
铅 |
Pb |
-0.13 |
氢 |
H |
0.000 |
锡 |
Sn |
-0.14 |
实验证明,各种硫化物矿石也有不同的电极电位,表附4-2列出了各种硫化物矿石相对于金属铜的电极电位值。由表可看出:
(1)大多数金属硫化物矿石的电极电位均为正,它们的电极电位相对于一般贵金属的电极电位。
(2)如果选择与硫化物电极电位差别较大且电位较稳定的锌电极来制成电极,便可在矿层处得到明显的正的电极电位异常。
矿石 |
电极电位(V) |
矿石 |
电极电位(V) |
黄铜矿 |
0.18~0.3 |
方铅矿 |
0.15 |
铜蓝 |
0.2 |
辉锑矿 |
-0.17~-0.60 |
黄铁矿 |
0.18 |
闪锌矿 |
-0.20~-0.40 |
斑铜矿 |
0.17 |
铜 |
0.00 |
如图1,M为刷子电极,N1,N2为比较电极刷子电极,比较电极都用锌做电极。锌电极的电极电位为-0.76V,它与金属矿层的电极电位相比差别大,目的是产生大的正异常,而且比较稳定。N1,N2短路,这样可以平均井孔中自然电位,减小自然电位的影响。
设Vm为刷子电极在矿层上的电极电位;Vn为比较电极在泥浆中的电极电位,在非矿层上两者在泥浆中的电位相等即:
ΔVmn=Vm-Vn=0
在矿层上
ΔVmn=Vm-Vn
所测得的电位差与矿体的出露面积与刷子头的接触面积有关。当刷子头(M极)与电子导电矿体接触时,刷子头的电极电位可用下式近似确定:
式中,VK,Va分别为矿体和刷子电极的电极电位;SK,Sa分别为矿体出露面积和刷子头的接触面积。
由式可得出:
(1)当Sa
(2)实验结果表明,当刷子头的接触面积比电子导电矿物颗粒的出露面积大100倍以上(S a/S K>100)时,电极电位法实际上已测不到任何异常。
应用电极电位测井曲线可以解决下列问题:
1.精确划分电子导体矿层
在大多数金属硫化物、石墨、无烟煤等电子导电性矿层上,电极电位曲线都显示出急剧突变的鲜明异常(如图2)。根据电极电位曲线的急剧变化段,可以精确确定矿层的界面和厚度。这是其他测井曲线所不及的。
2.了解矿层的结构,估计矿层的贫富
当刷子电扳在浸染状矿层中通过时,刷子头时而与矿接触,时而不接触,故电极电位曲线呈参差不齐的多峰异常。矿层越贫,电极电位曲线的异常越稀疏。反之,矿层越富,曲线的异常峰就越密集。致密块状矿体,有很好的电连通性,它的电极电位异常表现为规则的宽的单个异常。据此,利用电极电位曲线可以定性判断矿层的结构,估计矿层的贫富。 2100433B
电极电位法在划分导电性矿层,确定矿层的结构,区分致密矿层(富矿)与浸染状矿层(贫矿)方面具有突出的优越性。因此,电极电位法是金属矿测井中常用的重要测井方法。
测井时采用刷子电极。当刷子电极与非电子导体接触时,刷子电极与相同金属材料做成的比较电极具有相同的电极电位,所以测量电路显示为“零电位差”。当刷子电极与电子导体接触时,刷子与导体等电位,与比较电极将有一定电位差。因此,沿井身记录的电极电位曲线可以用来划分电子导电矿体。
楼上回答的都不对。氢电极只是标准电极,我们人为的把它的电位定为“0”,以此来比较出其它电极电位的大小。电化学科研中,常用的参比电极是甘汞电极,因为它的制备比较容易(简单)。25摄氏度下c的电极电位数据...
Hg 0.242 和 Ag 0.199
1、DO溶氧电极 应用极谱式原理,以铂金(Pt)作阴极,Ag/AgCl作阳极,电解液为0.1M氯化钾(KCl),测量时,在阳极和阴极间加上0.68V的极化电压,氧通过渗透膜在阴极消耗,透过膜...
我国石油勘探测井中使用的电极系,长期以来没有专用的电极系电缆,一直采用代用品——麻包电缆作为中心加强芯,外附绝缘传输导线和电极引线。在导线的外边包绕帆布带或塑料带,作为保护层。这种电极系虽然己使用多年,也积累了不少制造、使用、保养的经验,但是它在结构上和使用上还存在着一些缺点。这些缺点虽经多方改进,仍然难以克服,概括说主要是:
水位电极 一、水位电极的概述 Co-fly 系列电接点水位计,主要用于锅炉汽包、高低加热器、除氧器、蒸发器、直流锅炉起动分离器、水箱 等的水位测量。本装置由测量筒和二次仪表组成。采用数码显示和汽红水绿双色发光二极管显示液位。 二、仪表的特点及技术参数 1.水位电极的特点: ①具有闪光、声音报警功能。 ②具有 4-20mA 信号输出,可接 DCS 系统,设有保护联锁输出功能。 ③具有自供电功能,断电后可继续工作 4 小时。 ④仪表上设有三个按钮, a报警消音、 b排污按钮、 c检测按钮。 2.水位电极的技术参数: ①电源电压: 220V±10% 、50Hz ②工作环境温度: -10-45℃ ③工作相对湿度:≤ 85% ④液体水阻范围: 0-500KΩ ⑤继电器输出接点容量: 220V、3A ⑥水位显示点数: 5-19点 (最多可达 38点 ) 例如 19点: 0、± 15、± 30、± 50
测井方法众多,电、声、放射性是三种基本方法,特殊方法有电缆地层测试、地层倾角测井、成像测井、核磁共振测井等,其他测井方式还有随钻测井。各种测井方法基本上是间接地、有条件地反映岩层地质特性的某一侧面。要全面认识地下地质面貌,发现和评价油气层,需要综合使用多种测井方法,并重视钻井、录井第一性资料。
通常指地球物理测井。把利用电、磁、声、热、核等物理原理制造的各种测井仪器,由测井电缆下入井内,使地面电测仪可沿着井筒连续记录随深度变化的各种参数。通过表示这类参数的曲线,来识别地下的岩层,如油、气、水层、煤层、金属矿床等。
对石油工业来说,在勘探期间寻找新油田的测井称勘探测井,内容有:①地层倾角测井(了解地下构造及沉积构造);②饱和度测井(识别岩性、油、气、水储集层);③电缆式地层测试(对油、气、水储集层进行测试)。
在开采过程中的测井称开发测井。主要测定井下油、气、水层的岩石物理性质,监测各油层的工作情况,检查开发井的技术状况等,是开发井采取作业措施和进行油田开发调整的重要依据。内容有饱和度测井、生产测井、工程测井。
声波在不同介质中传播时,速度、幅度及频率的变化等声学特性也不相同。声波测井就是利用岩石的这些声学性质来研究钻井的地质剖面,判断固井质量的一种测井方法。
根据油(气)层、煤层或其他探测目标与周围介质在电性上的差异,采用下井装置沿钻孔剖面记录岩层的电阻率、电导率、介电常数及自然电位的变化。电法测井包括以下几种:
使用简单的下井装置(电极系)探测岩层电阻率,以研究岩层的电性特征。由于影响因素较多,其测量结果称为视电阻率。电阻率测井按其电极系的组合及排列方式不同,又分为梯度电极系测井及电位电极系测井。
在电阻率测井的基础上发展了微电极测井。它用于测量靠近井壁附近很小一部分泥饼和冲洗带地层的电阻率,能较准确地指示泥饼的存在及划分渗透性地层,能区分储集层中的薄夹层(非渗透层)以及准确地确定地层厚度。
是一种聚焦电阻率测井方法,主要用于高电阻、薄地层及盐水泥浆测井。根据同性电相斥的原理,在供电电极(又称主电极)的上方和下方装有聚焦电极,用聚焦电流控制主电流路径,使它只沿侧向(垂直井轴方向)流入地层。由于侧向测井电极系结构不同(如双侧向电极系的浅侧向电极系和深侧向电极系),聚焦电流对主电流的屏蔽作用大小不同,因而它们具有不同的径向探测深度。
是一种探测地层电导率的测井方法。该方法根据电磁感应原理,测量地层中涡流的次生电磁场在接收线圈中产生的感应电动势,以确定地层的电导率。它是淡水泥浆井和油基泥浆井有效的一种测井方法。同时它特别适用于低电阻率岩层的探测,包括离子导电的含高矿化度地层水的油(气)、水层和电子导电的金属矿层。
是探测岩石介电常数的一种测井方法。由于水的介电常数远远大于油(气)和造岩矿物的介电常数,所以它可用于判断油田开发中出现的水淹层,并提供估计油层残余油饱和度及含水量多少的可能性。
沿钻孔剖面测量移动电极与地面地极之间的自然电场。自然电位通常是由于地层水和泥浆滤液之间的离子扩散作用及岩层对离子的吸附作用而产生的。因此,自然电位曲线可用来指示渗透层,确定地层界面、地层水矿化度以及泥质含量。在油(气)井中,它与电阻率测井组合,可以划分油(气)、水层并进行地层对比等。
1988年,经全国科学技术名词审定委员会审定发布。