中文名 | 电容倍增器 | 外文名 | capacitymultiplier |
---|---|---|---|
作 用 | 解决集成电路大容量电容器的问题 | 组 成 | 运算放大器和接地电容等 |
应 用 | 等超低频正弦信号发生器 |
该电路的等效电容相当于C1的电容乘以三极管的电流增益(β),效果相当于电容容量被三极管放大了β倍。
R1 与C1 是能过滤VS纹波的低通滤波器。 R1 不仅为C1提供充电电流,而且为三极管提供基极电流。R2是该电路的等效负载(暂时我们认为这是一个纯阻性负载)。
假如没有三极管Q, 那么R2 就是电容C1最直接的负载,想要抑制纹波,C1必须非常非常大才可以扛得住R2吸走的电流。现在有了这个三极管Q, 那么负载从C1上吸走的电流就被巧妙地缩小了 β倍,换一句话来讲,就是 C1 的电容对于特定负载被放大了 β倍。
注意这不是一个稳压电路,因为输出电压会由输入电压 VS的变化而变化。输出电压会比三极管基极电压低约0.65V,在带负载时能比VS 低 2–3 V。 如果R1和C1的值足够大,输出纹波能够降低到几乎可以忽略不计的水平。但是输出上升沿会变缓,具体表现在从零电压上升到工作电压时会变得十分缓慢 (尤其是带负载时)。
这是由于R1和C1很大的时间常数引起的。
这里,电容 C1的容量被增大了R1 / R2倍。
等效电容C = C1 * R1 / R2。
电容倍增器基于三极管
该电路的等效电容相当于C1的电容乘以三极管的电流增益(β),效果相当于电容容量被三极管放大了β倍。
R1 与C1 是能过滤VS纹波的低通滤波器。 R1 不仅为C1提供充电电流,而且为三极管提供基极电流。R2是该电路的等效负载(暂时我们认为这是一个纯阻性负载)。假如没有三极管Q, 那么R2 就是电容C1最直接的负载,想要抑制纹波,C1必须非常非常大才可以扛得住R2吸走的电流。现在有了这个三极管Q, 那么负载从C1上吸走的电流就被巧妙地缩小了 β倍,换一句话来讲,就是 C1 的电容对于特定负载被放大了 β倍。
注意这不是一个稳压电路, 因为输出电压会由输入电压 VS的变化而变化。输出电压会比三极管基极电压低约0.65V,在带负载时能比VS 低 2–3 V。 如果R1和C1的值足够大,输出纹波能够降低到几乎可以忽略不计的水平。但是输出上升沿会变缓,具体表现在从零电压上升到工作电压时会变得十分缓慢 (尤其是带负载时),这是由于R1和C1很大的时间常数引起的。
电容倍增器其实是一个虚拟电容,不过体积可以做的比同样大小的真电容更小。有了电容倍增器,有很多好处,不仅替代了很多需要使用大电容的场合,而且像只用模拟电路设计超低频滤波器、长延时电路也成为可能。
而用真的电容去做这些是很困难的,往往体积庞大,而且巨大容量的电容难以买到。
另外在需要低噪声直流供电的场合,可以用它当一个巨大的滤波电容,尤其是在带负载时能很好的抑制纹波噪声。
使用方法:(前提是选择正确的工具产品)."扭力倍增器 扭矩倍增器 &nb...
使用方法前提是选择正确的工具产品."扭力倍增器 扭矩倍增器 扭力放大器 齿轮减速器 力矩放大仪...
供电系统里面提到的增容是指高压用户提出为供电增加容量,实际的操作一般就是更换更大容量的变压器。这个由用户向供电公司提出申请。
电容倍增器仅用一个电容和放大器放大了电容的容量。它其实是一个虚拟电容,不过体积可以做的比同样大小的真电容更小。有了电容倍增器,有很多好处,不仅替代了很多需要使用大电容的场合,而且像只用模拟电路设计超低频滤波器、长延时电路也成为可能。而用真的电容去做这些是很困难的,往往体积庞大,而且巨大容量的电容难以买到。另外在需要低噪声直流供电的场合,可以用它当一个巨大的滤波电容,尤其是在带负载时能很好的抑制纹波噪声。
现代电子技术突飞猛进的一个重要方面是集成电路技术的日新月异。就目前的水平而言,要在集成电路中制作大容量的电容比较困难。
同时,容量越大,占用芯片的面积也越大。但是,便携设备、手持仪表等电子系统微型化需要集成大容量电容。
利用电流传输器的阻抗变换作用,可使小容量的电容等效变换为较大容量的浮地电容。尽管这样增加了一些有源器件,但这正好可以发挥集成电路自身的优势,克服难以集成大容量电容的劣势。
把这种有源浮地电容倍增器应用于开关电容DC—DC变换器,可为它的全单片集成提供一种新方法。
电容倍增器基于运放
这里, 电容 C1的容量被增大了R1 / R2倍。 等效电容C = C1 * R1 / R2.
分析了高能X射线工业CT所常用的闪烁探测器的优缺点,及传统气体电离室探测器存在的不足。为克服这些缺点和不足,从X光子与物质相互作用理论出发,结合高能工业CT的结构特点,探讨了高能窄X射线束入射到薄金属片中X光子和光电子的输运过程,提出了以高密度的金属片作为X光子辐射转换体,以气体电子倍增器作为光电子倍增放大的新型高能工业CT探测器方案。并利用基于Linux平台的EGSnrc程序进行了Monte-Carlo仿真。从原理上说明了这种气体倍增探测器相对于传统气体电离室探测器,既有较高的探测效率,其体积也大为减小,替代高能工业CT传统的闪烁体探测器在理论上是可行的。
凌特公司日前推出采用2mm×2mmDFN封装的充电泵倍增器LTC3204,具有低噪声和恒定频率(1.2MHz)。LTC3204-3.3可从1.8V的最小输入电压(2节AA碱性/镍氢电池)产生3.3V输出电压,输出电流可达50mA;LTC3204-5则可从2.7V的最小输入电压(锂离子电池)产生5V输出,输出电流达150mA。