电能输运,由电源中心通过输电网向各用电中心输送电能的过程。是能源输送的一种有效形式。为了减少长途输电的损失,应提高输电电压。从发电厂发出的电能通过各级变压调压集中于电源输出中心,通过高压或特高压电网输送至用电中心,再经降压调压后安全送达用户。
气体的输运现象又称为迁移现象。一个孤立系统,经过足够长的时间,最后总要达到平衡态。在趋向平衡态的过程中,由于动量的传递,气体各部分间的宏观相对运动将消失;由于能量的传递,气体各部分间的温度差异将消失;由于质量的传递,气体各部分间的密度差异也将消失。这些过程统称为输运过程。
气体的输运现象来源于分子间的碰撞,因而与气体分子的平均自由程有密切关系。在有限的容器中,平均自由程与容器线度相比的相对大小决定了输运过程的具体性质。平均自由程的大小由气体的压强决定,因而在不同压强下,有限容器如管道内气体的输运机理有很大差别。通常分以下三种情况:
①较高压强下,气体分子的平均自由程较小,即远小于管道的直径分子间的碰撞频率,远大于分子对器壁的碰撞频率,物理量的输运主要靠气体分子之间的碰撞。
②较低压强下,气体分子的平均自由程较大,即大于管道直径时,分子对器壁的碰撞频率大于分子间的碰撞频率,物理量的输运主要靠气体分子对器壁的碰撞。
③压强介于以上两种情况之间,即气体分子的平均自由程接近管道直径时,则需要综合考虑。
气体的输运现象正文
有时又称为迁移现象。
一个孤立系统,经过足够长的时间,最后总要达到平衡态。在趋向平衡态的过程中,由于动量的传递,气体各部分间的宏观相对运动将消失;由于能量的传递,气体各部分间的温度差异将消失;由于质量的传递,气体各部分间的密度差异也将消失。这些过程统称为输运过程。
气体的输运现象来源于分子间的碰撞,因而与气体分子的平均自由程有密切关系。在有限的容器中,平均自由程与容器线度相比的相对大小决定了输运过程的具体性质。平均自由程的大小由气体的压强决定,因而在不同压强下,有限容器如管道内气体的输运机理有很大差别。通常分以下三种情况:①较高压强下,气体分子的平均自由程较小,即远小于管道的直径()时,分子间的碰撞频率就远大于分子对器壁的碰撞频率,物理量的输运主要靠气体分子之间的碰撞。②较低压强下,气体分子的平均自由程较大,即大于管道直径(>)时,分子对器壁的碰撞频率大于分子间的碰撞频率,物理量的输运主要靠气体分子对器壁的碰撞。③压强介于以上两种情况之间,即气体分子的平均自由程接近管道直径(≈)时,则需要综合考虑。
气体的输运现象主要研究粘滞性、热传导和扩散。
由于气体各部分的运动速度不同,各部分之间或气体与器壁之间有相对运动,导致气体的动量沿垂直于气体速度方向由高速区传向低速区,产生摩擦效应。在不同压强下,摩擦的情况不同。
①较高压强下,这时气体分子的平均自由程比管道截面的尺寸小得多,可把气体按Л的大小分成许多与管轴相平行的气层。越靠近管壁的气层,相对管壁的流动速度越慢。此时,由于气层数目多,可认为动量沿各气层连续改变,并依靠分子之间的碰撞作用由一层传递到相邻的一层。层与层之间由摩擦作用表现出粘滞性。这种粘滞性又称为内摩擦。摩擦力d与垂直于管轴方向的流速变化率d/d及作用面积d成正比,可表述为
此式最初由宏观实验总结出来,称为牛顿粘滞定律。比例系数称为粘滞系数(或内摩擦系数),其数值要由实验测定(表1)。
气体的输运现象 1859年J.C.麦克斯韦用速度分布函数的概念和平均自由程Л,首先推算出
式中为气体的分子数密度,为每个气体分子的质量,尌为分子热运动的平均速度,Л为分子的平均自由程。1904年J.H.金斯考虑了分子的速度住留效应(分子在碰后的平均速度与碰前的速度有关,总的效果是保留了一部分碰前速度)之后,得到=0.4607尌。1916年S.查普曼和1917年D.恩斯库格根据玻耳兹曼方程,从更严密的数学方法入手,进而推算非平衡态过程的物理常数,得到=0.499尌,这个结果可认为是比较精确的。
在这个压强范围内,内摩擦系数一般与压强无关,而与气体分子量的二次方根成正比,与气体分子有效直径的二次方成反比,并随温度的升高而增大。其国际单位是帕〔斯卡〕·秒(Pa·s),CGS制表示的内摩擦系数的单位是泊(P)。
② 较低压强下,这时气体分子的平均自由程大于管道截面直径。由于分子之间的碰撞很少,所以没有显著的动量交换,以致分子间的内摩擦可以忽略。气体分子与管壁之间的碰撞占主要地位,气流与管壁之间的相对速度所造成的摩擦作用称为外摩擦。
③ 中等压强下,当气体分子的平均自由程接近并略小于管道截面的直径时,可把气体按平均自由程的大小分成几层,这时内摩擦、外摩擦作用有同等的重要性。从宏观来看,贴近管壁的气层与器壁间有速度跃变,称为滑动现象。
由于各部分气体温度不同,或器壁间、器壁与气体间温度不同,使热量通过气体分子热运动从高温区转向低温区而产生的传热效应。此时,能量由高温区传向低温区。
气体传热现象还可由另一些机制造成,如对流、辐射等。热传导仅指输运过程的气体分子传热。
① 较高压强下,这时的气体热传导问题与内摩擦问题十分类似。若有一对温度不同的平行板,那么单位时间的传热量 d与垂直于平行板方向的温度梯度d/d及作用面积d成正比,可表述为
这就是由宏观实验总结出来的傅里叶热传导定律。比例系数称为热导率或导热系数,其数值由实验测定(表2)。
气体的输运现象 1859年麦克斯韦首先由理论推算出=с,其中с为定容比热容,的单位是瓦(特)每米开〔W/(cm·K)〕。1913年A.T.奥伊肯及稍后查普曼和恩斯库格从更严格的方法入手得到=εс,其中γ为气体的比热容比。由此可推出的值:单原子气体为2.5;双原子气体为1.9;多原子气体为 1.75以至更小些。由于с与压强无关,与温度的关系也较小,所以热传导系数与压强、温度的关系同内摩擦系数的情况类似。
② 较低压强下,稀薄气体的传热决定于单个分子与器壁的碰撞。若有一对温度不同的平行板,两者的温差为Δ,那么,分子将与高温板壁碰撞获取能量,然后反射并与低温板壁碰撞交出能量。因此,单位时间的传热量与单位时间碰撞在单位面积上的分子数、每个分子可携带的能量、分子与板壁碰撞可交换能量的程度、温差以及作用面积的大小成正比。
③ 中等压强下,气体分子的平均自由程与器壁的尺寸有同样的数量级。能量迁移与压强的关系介于高、低压强的传热情况之间,在板壁附近有与速度跃变相类似的温度跃变现象。
综上所述,在较低压强区传热量与压强成正比,在中等压强区传热量仍与压强有关。利用这两个区间的热传导原理,可以测量气体压强,制成热传导真空计。当>时,热传导随压强而降低,利用这一特性可以使系统间达到热绝缘的目的。如暖瓶具有真空夹层,因此保温性能好。大气压强下,空气分子的平均自由程约 0.1μm,若采用具有不大于 0.1μm直径孔隙的材料如气凝胶、蛭石、珠光砂、硅胶、石棉粉、硅藻土、玻璃棉等,同样可以隔热保温。用棉花、丝棉、驼毛作冬衣穿在身上能保暖,也是这个道理。
由于气体各部分的密度不同,使气体分子从密度较大的区域自发地传递到密度较小的区域,此时被输运的是质量。由密度梯度引起的气体扩散,主要分为二种:一是自扩散──同一种气体因本身密度不同而引起的扩散;一是互扩散──发生在不同种气体间的扩散。在某些特殊情况下,由于温度差别,也会引起质量的输运。真空技术中称这种输运现象为热流逸。
自扩散 在密度梯度的作用下,分子从高密度区域向低密度区域传递。单位时间的质量迁移d与密度梯度及作用面积d成正比,可表述为
这就是斐克扩散定律,比例系数称为扩散系数,其数值由实验测定,单位是平方米每秒(m/s)。扩散系数=1.2~1.5/,它随温度的升高而增大,随气体分子量的减小而增加,见表3。
气体的输运现象 互扩散 在气体混合物中,当各成分的气体在各处的密度不同时,每种成分的分子也要从它的高密度区域向低密度区域移动。其扩散规律与自扩散类同,其扩散系数称为互扩散系数,见表3。
有直流电能、交流电能、高频电能等。这几种电能均可相互转换。