中文名 | 电池温度 | 外文名 | Battery temperature |
---|---|---|---|
产生原因 | 自身积累热量无法散失 | 缓解措施 | 改变电解液配伍、电极材料等 |
锂离子电池在热箱实验中的热稳定性可以直接反映电池的安全性。通过锂离子电池的热模拟可以研究各种因素对电池热行为的影响。
图1给出了设定模拟的锂离子电池在423K热箱实验到达446K时的温度分布图。图2给出了不同热箱温度时锂离子电池温度的变化。可以看出对于设定的锂离子电池在423K温度下,电池发生了自放热反应,但是由于电池和外界的热量传递,自放热反应产生的热量只是把电池温度升高,而不能应发电池的热失控反应;当热箱温度升到428K时,由于电池自放热速率的加快,是电池内部热量积累速率加快,电池的温度不断升高,最终出现了电池的热失控。当热箱温度上升到433K时,电池的自放热速率加快,热累积速度也更快,电池的热失控也更快出现。
锂离子电池自放热反应产生的热量和速率由电池材料本身的性质决定,而电池内部热量的积累状况还必须考虑电池和外界的热量传递,热交换的效率直接影响电池热量的积累。电池和外界的热交换系数对电池温度的影响。当热交换系数增大时,开始阶段外部热量向电池内部的传递加快,电池温度上升的速率增加,到达热箱温度所用的时间变短,但是电池自放热产生的热量也迅速地传递到外界,减少了电池内部热量的积累,抑制或减少了电池温度的升高,使电池更难进入热失控状态;反之,热交换系数减小时,电池和外界的热量传递变慢,开始阶段电池的温度上升速度变慢,达到热箱温度所需的时间变长,但是电池自放热产生的热量在电池内部积累速度变大,造成电池内部温度的加速上升,当热量的积累达到临界时,引发了电池的热失控反应。热交换系数越小,从到达热箱温度到电池热失控所需要的时间越短。电池的热交换系数与电池外壳的材质,外表面状态和外界空气的流动有关,周围空气流动速度越快,电池的热交换系数越大。因此大体积的动力锂离子电池组中需要散热装置提高各单体电池周围空气的流动速度。
电池和外界的热量交换效率还受到电池外壳热辐射的影响。热辐射传热速率和温度的四次幂呈线性关系,热辐射的引入会改变电池的温度。热辐射加快了电池与外界的热量传递,使电池到达热箱温度的时间变短,抑制了电池内部的热量积累。因此大体积的动力锂离子电池在设计时,需要对电池外壳进行加工处理,提高其热辐射系数。
电池和外界的热量交换是通过表面进行的,而电池自放热产生的总热量与电池的大小直接相关。一般来说,电池越大,表面积所占的比例就越小[圆柱电池时,比表面积/体积=2*(1/h 1/r)。式中:h指高度;r指半径。方形电池时,比表面积/体积=2*(1/a 1/b 1/c)。式中:a、b、c分别指长、宽、高],电池内部产生的热量越不容易扩散到外界环境。图5给出了不同大小的锂离子电池在423 K热箱条件下,电池的温度变化,可以看出,随着电池的变大,电池达到热箱温度所需时间增加,但是,由于电池内部放热量的增加,电池温度上升的幅度增大,引发电池热失控的可能性增大。当热箱温度为423 K时,6层正极的模型电池几乎没有引起电池温度的上升;12层正极的模型电池出现的温度上升幅度为23 K;18层正极的模型电池则引发了热失控反应。因此,为电池安全性考虑,在电池设计时,需要根据所选定材料的热参数确定该类单体电池的最小比例,以及何时的电池形状。
锂离子电池的荷电状态(SOC)描述了电池储能量的多少,从热力学角度看,电池内部的储能越多,材料所处的能量状态越高,热稳定越差,达到稳定态过程所释放的能量也越多。可以看出电池在半电状态时,内部产热造成的电池温度升高幅度较小,引发热失控的可能性变小,电池的热稳定性较好。
通过锂离子电池热模型,模拟研究了热箱温度,热交换系数,电池大小以及电池荷电状态对电池温度变化的影响,结果表明:热箱温度越高,锂离子电池热失控的危险越大;增大热交换系数,减小电池容量和降低电池荷电状态使电池的热稳定性提高。
绝热条件下的模拟结果表明:在封闭环境下,锂离子电池达到368 K后就有一定的危险性存在。材料反应速率和升温速率模拟结果表明:处在不同温度的锂离子电池热效应主要来源不同,正极/电解液分解反应和电解液分解反应是造成电池热失控的主要原因。
对于其他类型电池而言,可以参见相关专业书籍 。 2100433B
对锂离子电池的模拟可以进一步理解锂离子电池热失控的起因和过程,为锂离子电池安全性的提高提供参考。锂离子电池模拟的方法有很多,主要分为电化学模拟和热模拟两类:一类是基于物质,电荷的扩散守恒,能量守恒建立的模型,主要模拟不同条件下电池的充放电过程。 这类锂电池的模型在等温电化学模型上的锂/锂离子电池模型模拟电池的静态放电过程,多孔电极理论,利用宏观均相来近似描述固相和溶液间的各种可能的变化;浓溶液理论,溶液中的物质平衡和传递;球坐标下的Fick扩散方程描述固相中的物质平衡和扩散;能量守恒来计算电池的温度;发展了一个几乎适应于所有锂电池系统的一维模型;另一类是基于电池材料,电池的热性质实验,对锂离子电池的模拟可以进一步理解锂离子电池热失控的起因和过程,为锂离子电池安全性的提高提供参考。
锂离子电池模拟的方法有很多,主要分为电化学模拟和热模拟两类 :一类是基于物质,电荷的扩散守恒,能量守恒建立的模型,主要模拟不同条件下电池的充放电过程。这类锂电池的模型在等温电化学模型上的锂/锂离子电池模型模拟电池的静态放电过程,多孔电极理论,利用宏观均相来近似描述固相和溶液间的各种可能的变化;浓溶液理论,溶液中的物质平衡和传递;球坐标下的Fick扩散方程描述固相中的物质平衡和扩散;能量守恒来计算电池的温度;发展了一个几乎适应于所有锂电池系统的一维模型;另一类是基于电池材料,电池的热性质实验。
现在市面上一般都是在2000元左右的,质量好一点的,价格相对会比较贵一点的,性价比不同价格也是相对比较不同的,还有牌子也是相对比较重要的,主要还是看自己的选择温度计,是测温仪器的总称,可以准确的判断和...
1、镍氢、镍镉电池充电时充电时间估算方法是以电池容量除以充电器充电电流再乘以l到1.5,就是充电时间的小时数。如充电电池 容量标为800mAh的电池,充电电流为100mA,充电8-12小时。即为充电的...
你好,手机电池内置温度计,就是那个电池正负极以外的触点提供的数据,但要手机能读取才行,非智能机电池也是三脚的,但手机无法获取电池数据。 CPU的正常温度 保证在温升30度的范...
? 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved. ? 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved. ? 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved. ? 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
? 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved. ? 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved. ? 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved. ? 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
温度补偿的实现,需要开关电源的监控单元具有对电池浮充电压的调节控制能力,即调压能力。监控单元检测到蓄电池温度后,根据实测的有效温度来调节给蓄电池充电的浮充电压(即电源系统的输出电压)。
温度补偿通常是以25 ℃为基准,以每节(2 V)电池-3 mV/℃进行调节,对于使用48 V蓄电池组的通信电源来说,输出电压变化值计算公式为△V=(T-25)×(-3mV) ×24。如:监控单元检测到蓄电池温度为10 ℃,那么此时给蓄电池充电的浮充电压(即电源系统的输出电压)为53.5 (10-25) ×(-3mV) ×24= 53.5 1.08=54.58 V。
所以说在冬天您看到的蓄电池浮充电压(即电源系统的输出电压)会高于53.5 V,夏天看到会低于53.5 V,这是温度补偿的结果,属正常现象。
在蓄电池充电的时候,蓄电池的化学反应激烈程度和温度是紧密相关的。
以通信直流开关电源为例,同样的充电电压,不同温度下蓄电池的化学反应程度差别很大。
蓄电池温度越高,化学反应越剧烈,温度越低,蓄电池化学反应越平淡。因此,在蓄电池温度高时,由于电池化学反应加剧,需要降低浮充电压来减缓化学反应;蓄电池温度低时,化学反应减缓,此时需要升高浮充电压来增强化学反应,以保证能量的正常转换,这个功能就叫温度补偿。
温度补偿的实现,需要开关电源的监控单元具有对电池浮充电压的调节控制能力,即调压能力。监控单元检测到蓄电池温度后,根据实测的有效温度来调节给蓄电池充电的浮充电压(即电源系统的输出电压)。
温度补偿通常是以25 ℃为基准,以每节(2 V)电池-3 mV/℃进行调节,对于使用48 V蓄电池组的通信电源来说,输出电压变化值计算公式为△V=(T-25)×(-3mV) ×24。如:监控单元检测到蓄电池温度为10 ℃,那么此时给蓄电池充电的浮充电压(即电源系统的输出电压)为53.5+(10-25) ×(-3mV) ×24= 53.5+1.08=54.58 V。
所以说在冬天您看到的蓄电池浮充电压(即电源系统的输出电压)会高于53.5 V,夏天看到会低于53.5 V,这是温度补偿的结果,属正常现象。