中文名 | 电化学滴定法 | 外文名 | Electrochemical titration |
---|---|---|---|
优 点 | 终点判断客观,准确度和灵敏度高 | 分 类 | 电位滴定、电流滴定、电导滴定等 |
电导滴定是利用溶液的电导改变以确定滴定终点的滴定法。溶液的电导(即电阻的倒数)依赖于溶液中离子的数目和离子的迁移速度。在滴定过程中,因中和、氧化还原、沉淀、或络合等反应都可能引起溶液中离子数量的增加或减少,也引起电导的变化,故可得电导一体积曲线,从曲线可确定终点。测量溶液的电导可以用简单的惠斯顿电桥,其主要的部件是电导池。电导池的两级常用1平方厘米的铂片。为了克服电极极化的困难,光亮的电极须经铂化变黑,并改用交流电源。电导滴定适合作低量物质的测定,常用于测定离解常数和溶度积。
电流滴定又称“安培滴定”。利用扩散电流变化以确定终点的滴定法。所用检流计和电极均与极谐法相同。其指示电极为滴汞电极或铂丝微电极。可用极谐法所用任何参考电极。与极谐法不同之处是滴定过程中所加电压是固定不变的。滴定过程中的电流变化有四种情况:(1)电流渐减至一恒定值,(2)电流从一恒定值逐渐增加,(3)电流渐减后又逐渐增加,(4)电流不断增加。从滴定过程的电流变化可得电流一体积曲线,大多数滴定可以曲线的转折点为滴定终点。电流滴定的原理和所用仪器与极谱法相同,故又称极谱滴定。电流滴定可用于稀溶液(为10-4N)的滴定,溶解度较大的沉淀滴定,生成易水解盐的酸碱滴定等。 2100433B
氧化还原的电位滴定是当一离子被氧化时,丧失电子或负电荷;当一离子被还原则获得电子。因此,Fe 氧化为Fe 时,丧失一个电子。此过程与氢丧失一个电子以H 进入溶液相似。如果把铂躲浸在含有Fe 及Fe 离子的溶液中,则Fe 离子具有把电子放出给予铂丝的倾向,而Fe 离子剐有从铂躲收取电子的倾向。于是根据两种离子浓度的不同,将发生电位差。此时如果加入一氧化剂,将使电位随着Fe 离子浓度渐趋减少而改变,起初缓慢而后非常急速。电位的急速改变表示滴定格点的到达。
所用的仪器与酸和碱的电位滴定所用的一样。不过铂电极要小,同时不要让铂片镀上铂黑,而要保持光亮,不用时放在1:1 HCl中保存。甘汞电极是连接在总电路的负极,不是连在正极。用烧瓶代替烧杯,并使CO2通过溶液的表面(不是通过溶液内),防止被空气氧化。氧化剂或还原剂从滴定管洼入。每隔一段时间取伏特计的读数,到达终点时,1或2滴溶液特使电位联生显著的改变。
应该是升高的,用EDTA滴定法分析。
采用卤素灯,红外灯等方式对样品进行持续加热的同时,实时测定样品重量,这是目前加热法快速水份测定仪的检测方式,这种方法的仪器只需要通电,无需辅助的试剂,搅拌,吸排溶剂废液等功能,使用非常方便,为目前从多...
一般测量溶液中某种物质的浓度,会将此物质放入锥形瓶中加入试剂进行滴定。但是因为氨水容易挥发出氨气,导致溶液中氨含量降低,测量值比真实值偏小,因此装入滴定管中,在锥形瓶中装入盐酸和酚酞试剂进行滴定,这样...
电位滴定是利用溶液电位变化确定当量点的滴定法。在滴定过程中,被滴定的溶液中插入连接电位计的二支电极。一支为参考电极,为饱和甘汞电极(常通过盐桥插入),另一支为指示电极,常用铂丝。在氧化还原、络合、沉淀或酸碱滴定过程中,电位E随加入标准溶液体积V,不断改变。故最后可得E-V滴定曲线。从曲线可以确定滴定当量点。在特殊情况下可以不用参考电极而只用二支铂丝电极。当有一小电位加于这二电极时,由于电极极化产生相反的极化电位,使电流不能通过。当滴入的标准溶液是去极化剂时(如用碘滴定硫代硫酸钠),到终点时电极去极化,电流突增,使检流计指针永恒偏转。此种方法称为死停法。电位液定能较准确地确定终点,并消除指示剂误差,不受溶液的颜色和浑浊限制。
氯化胆碱(C_5H_(14)NCIO)分子内季胺中的氮显碱性,但该生物碱的碱性非常弱,其水溶液近于中性,用酸碱滴定法测定终点不敏锐,准确度很差。在国家标准中采用非水介质中酸碱滴定法,(冰醋酸介质中用HCIO_4滴定,结晶紫为指示剂),在实际应用中发现其结晶紫终点颜色的变化常常要受冰醋酸介质中含水量的影响,随含水量增大终点由紫色→纯蓝色→蓝绿色→绿色→黄色,终点不易观察。只有在优级纯冰醋酸中终点易观察,但是优级纯冰醋酸的提纯和购买都较困难,并且价格较贵。为了解决在分析纯冰醋酸中进行滴定(其含水量在0.1%~0.4%)终点难以判断的问题,本文利用电位滴定
绿黄隆在溶剂二甲基甲酰胺中,甲醇钠作滴定剂,直接进行定量测定。该法标准偏差和相对平均偏差均在0.5%左右。
电化学是研究电子导体(或半导体材料)/离子导体(一般为电解质溶液)或离子导体/离子导体界面结构、界面变化过程与反应机理的一门科学。生命现象最基本的过程是电荷运动,生物电的起因是由于细胞膜内外两侧存在电势差,很多生命现象如人或动物的肌肉运动、细胞的代谢作用、神经的信息传递以及细胞膜的结构与功能都可用电化学原理来解释。生物电池、心电图、脑电图等则是利用电化学方法模拟生物体内器官的生理规律及其变化过程的实际应用。由上可见,电化学是生命科学中最基础的一门相关学科,因而研究生物电化学具有极其重要的意义。
电化学在化工、冶金、机械、电子、航空、航天、轻工、仪表、医学、材料、能源、金属腐蚀与防护、环境科学等科技领域获得了广泛的应用。当前世界上十分关注的研究课题, 如能源、材料、环境保护、生命科学等等都与电化学以各种各样的方式关联在一起。
原电池是利用两个电极之间金属性的不同,产生电势差,从而使电子的流动,产生电流.又称非蓄电池,是电化电池的一种,其电化反应不能逆转,即是只能将化学能转换为电能,简单说就即是不能重新储存电力,与蓄电池相对 。
原电池是将化学能转变成电能的装置。所以,根据定义,普通的干电池、燃料电池都可以称为原电池。
组成原电池的基本条件:
1、将两种活泼性不同的金属(即一种是活泼金属一种是不活泼金属),或着一种金属与石墨(Pt和石墨为惰性电极,即本身不会得失电子)等惰性电极插入电解质溶液中。
2、用导线连接后插入电解质溶液中,形成闭合回路。
3、要发生自发的氧化还原反应。
原电池工作原理
原电池是将一个能自发进行的氧化还原反应的氧化反应和还原反应分别在原电池的负极和正极上发生,从而在外电路中产生电流。
原电池的电极的判断:
负极:电子流出的一极;发生氧化反应的一极;活泼性较强金属的一极。
正极:电子流入的一极;发生还原反应的一极;相对不活泼的金属或其它导体的一极。
在原电池中,外电路为电子导电,电解质溶液中为离子导电。
原电池的判定:
(1)先分析有无外接电路,有外接电源的为电解池,无外接电源的可能为原电池;然后依据原电池的形成条件分析判断,主要是“四看”:看电极——两极为导体且存在活泼性差异(燃料电池的电极一般为惰性电极);看溶液——两极插入溶液中;看回路——形成闭合回路或两极直接接触;看本质——有无氧化还原反应。
(2)多池相连,但无外接电源时,两极活泼性差异最大的一池为原电池,其他各池可看做电解池。
电解池是将电能转化为化学能的装置。
电解是使电流通过电解质溶液(或熔融的电解质)而在阴、阳两极引起氧化还原反应的过程。
发生电解反应的条件:
①连接直流电源
②阴阳电极 阴极:与电源负极相连为阴极
阳极:与电源正极相连为阳极
③两极处于电解质溶液或熔融电解质中
④两电极形成闭合回路
电解过程中的能量转化(装置特点):
阴极:一定不参与反应 不一定是惰性电极
阳极:不一定参与反应 也不一定是惰性电极
电解结果:
在两极上有新物质生成
电解池电极反应方程式的书写:
阳极:活泼金属—电极失电子(Au,Pt,Ir 除外);惰性电极—溶液中阴离子失电子
注:失电子能力:活泼金属(除Pt Au)>S2->I->Br->Cl->OH->含氧酸根(NO3 ->SO4 2-)>F-
阴极:溶液中阳离子得电子
注:得电子能力:Ag >Hg2 >Fe3 >Cu2 >H (酸)>Pb2 >Sn2 >Fe2 >Zn2 >H2O(水)>Al3 >Mg2 >Na >Ca2 >K (即活泼型金属顺序表的逆向)
对应关系:阳极连电源正极,阴极连电源负极(可见高中教材*《化学选修·四》)
规律:铝前(含铝)离子不放电,氢(酸)后离子先放电,氢(酸)前铝后的离子看条件。
四类电解型的电解规律①电解水型(强碱,含氧酸,活泼金属的含氧酸盐),pH由溶液的酸碱性决定,溶液呈碱性则pH增大,溶液呈酸性则pH减小,溶液呈中性则pH不变。电解质溶液复原—加适量水。
②电解电解质型(无氧酸,不活泼金属的无氧酸盐,),无氧酸pH变大,不活泼金属的无氧酸盐PH不变。电解质溶液复原—加适量电解质。
③放氢生碱型(活泼金属的无氧酸盐),pH变大。电解质溶液复原—加阴离子相同的酸。
④放氧生酸型(不活泼金属的含氧酸盐),pH变小。电解质 溶液复原—加阳离子相同的碱或氧化物。
——K2CrO4指示剂
(一)原理:以AgNO3标准溶液测定Cl-为例
终点前:Ag Cl-=AgCl(白色)Ksp=1.8×10ˉ10
终点时:2Ag CrO42-=Ag2CrO4ˉ(砖红色)Ksp=2.0×10ˉ12
沉淀的溶解度S:SAgCl
1.34×10-5mol/L二甲基二碘荧光黄>Br->曙红>Cl->荧光黄或二氯荧光黄
计量点附近终点出现的早晚与溶液中[CrO42-]有关:
[CrO42-]过大------终点提前------结果偏低(-TE%)
[CrO42-]过小-------终点推迟------结果偏高( TE%)
(二)指示剂用量(CrO42-浓度)
理论计算:在计量点时,溶液中Ag 物质的量应等于Cl-物质的量若计量点时溶液的体积为100ml,实验证明,在100ml溶液中,当能觉察到明显的砖红色Ag2CrO4ˉ出现时,需用去AgNO3物质的量为2.5×10-6mol,即:
实际滴定中:因为K2CrO4本身呈黄色,按[CrO42-]=5.9×10-2mol/L加入,则黄颜色太深而影响终点观察,实验中,采用K2CrO4浓度为2.6×10-3mol/L~5.6×10-3mol/L范围比较理想。(计算可知此时引起的误差TE<±0.1%)
在实验中:50~100ml溶液中加入5%K2CrO41ml。
(三)滴定条件
1.溶液的酸度
通常溶液的酸度应控制在pH=6.5~10(中性或弱碱性),
若酸度高,则:
Ag2CrO4 H=2Ag HCrO4- Ka2=3.2×10-7
2HCrO4-"para" label-module="para">
若碱性太强:2Ag 2OH-2AgOH=AgO↓ H2O
当溶液中有少量NH3存在时,则应控制在pH=6.5~7:
NH3 OH-NH3 H2O=Ag Ag(NH3)2
2.沉淀的吸附现象 先生成的AgCl↓易吸附Cl-使溶液中[Cl-]↓,终点提前,滴定时必须剧烈摇动。AgBr↓吸附更强。
3.干扰离子的影响
①能与Ag 生成沉淀的阴离子(PO43-、AsO43-、SO32-、S2-、CO32-、C2O42-)
②能与Cr2O72-生成沉淀的阳离子(Pb2 、Ba2 )
③在弱碱性条件下易水解的离子(Al3 、Fe3 、Bi3 )
④大量的有色离子(Co2 、Cu2 、Ni2 )都可能干扰测定,应预先分离。
——铁铵矾[NH4Fe(SO4)2]指示剂
(一)原理:
SCN- Ag =AgSCN↓(白色)Ksp=1.0×10-12终点时:SCN- Fe3 =FeSCN2 (红色)K稳=138
终点出现早晚与[Fe3 ]大小有关。
(二)滴定条件
1.溶液的酸度——在硝酸的酸性条件下进行
2.直接滴定法测定Ag 时,AgSCNˉ吸附Ag ,近终点时剧烈摇动
3.返滴定法测定Cl-时:
Cl- Ag (过量)=AgClˉ SAgCl=1.35×10-5mol/L大
Ag (剩余) SCN-"para" label-module="para">
终点时:SCN- Fe =FeSCN2 (红)发生转化作用:
AgClˉ SCN-=AgSCNˉ Cl-
致使[SCN-]ˉ,已生成的FeSCN2 离解,红色消失,多消耗SCN-,造成较大误差,常采取预防措施:
(1)加入有机溶剂硝基苯(有毒)、1,2—二氯乙烷、甘油等,用力摇动,使AgClˉ表面被有机溶剂覆盖,减少与溶液接触;
(2)近终点时,防止剧烈摇动;
(3)加入AgNO3先生成AgClˉ后,先加热至沸使AgCl凝聚。4.干扰物质
强氧化剂及铜盐、Hg盐等,应预先分离或掩蔽。
——吸附指示剂
(一)原理:
吸附指示剂大多是有机酸------当被沉淀表面吸附后------结构发生变化------颜色发生变化
例:用AgNO3溶液滴定Cl-,采用有机酸荧光黄指示剂(HFIn),为指示剂:
HFIn=H FIn-(黄绿色)
计量点前:Ag Cl-=AgClˉ(白色)
AgCl Cl-"para" label-module="para">
计量点后—终点时:AgCl Ag "para" label-module="para">
黄绿色粉红色
(二)滴定条件
1.加入胶体保护剂——糊精或淀粉
2.酸度:一般在中性、弱碱性、弱酸性溶液中进行
HFIn分子不易被吸附,FIn-阴离子存在与Ka有关.
Ka-允许酸度越高(pH值ˉ)
如:曙红Ka较大,pH32以上使用;
而荧光黄Ka较小,pH37以上使用。
但:最高pH二甲基二碘荧光黄>Br->曙红>Cl->荧光黄或二氯荧光黄