磁学国家重点实验室是在1934年建立的中国科学院物理研究所近代磁学研究室的基础上逐步建立的,1951年正式组建成磁学实验室,1987年被批准为中国科学院磁学开放实验室,1990年经科技部和中国科学院批准成为磁学国家重点实验室。
中文名称 | 电磁场及电磁波国家重点实验室 | 建立 | 1934年 |
---|---|---|---|
地位 | 磁学国家重点实验室 | 研究方向 | 以磁性物理的基础研究为指导 |
实验室自建设以来取得了在许多国际上开创性和有影响的研究成果。如在新型稀土-过渡族化合物的结构和磁性中,首次发现了快淬高碳高稳定间隙稀土铁化合物,首次通过常规冶炼方法获得了结构稳定、高居里温度、强单轴各向异性的高碳2:17型单相化合物,克服了国际上众多实验室都在努力解决的2:17型稀土铁氮(碳)化物高温不稳定的缺点,并对这类化合物的晶体结构与磁性作了系统地研究,引起了国际同行的重视。国际著名物理学家、稀土铁族间隙氮化物的发现者、欧洲间隙稀土化合物攻关组组长Coey教授在国际磁学会议的特邀报告<永磁学的前景>中引述了本项研究;著名磁学专家、美国Hadjipanayis教授在国际间隙稀土化合物会议的大会总结报告中称:间隙高稳定碳化物是永磁发展的一个重要内容。在自旋电子学材料和物理研究中,我们在多层膜方面的开创性工作。例如在全世界至今发现具有GMR效应的20多种金属多层膜中,有三种是我们发现的。1995年至2001年间实验室承担各类重要科研项目75项,其中863项目3项,973项目6项,院重大项目6项,重大自然科学基金项目10项,杰出青年基金2项,杰出青年基金B类1项,百人计划5项。获国家、院、省部级奖项11项,申请及授权专利9项。共发表学术论文650篇、国际国内会议论文230篇,合作出版中文专著2本。经科技部信息所统计结果表明,1995年以来,磁学实验室室在稀土金属间化合物方面的论文被引用的次数超过400多次,其中单篇论文被引用数两次列全国前十名之内。
电磁场及电磁波国家重点实验室简介
磁学实验室的研究方向是:以磁性物理的基础研究为指导,以有重大应用背景的材料--稀土过渡族金属间化合物和氧化物、自旋电子学等为重点,开展物质的基本磁性和磁电、磁热、磁光等效应研究,探讨从微观电子结构、介观、界面及复合相到宏观磁性之间的内在联系,探索新材料和新的人工结构材料的磁性物理学。实验室现分五个课题组开展相应的工作:1)散裂中子源设计;2)自旋电子学材料、物理及器件研究;3)磁性金属氧化物/化合物量子序调控及相关效应研究;4)磁性纳米结构与磁共振研究;5)新型磁性功能材料的探索和研究。 现任实验室主任为成昭华研究员,学术委员会主任是沈保根研究员。
体对来自导线、电缆、元部件、电路或系统等外部的干扰电磁波和内部电磁波均起着吸收能量(涡流损耗)、反射能量(电磁波在体上的界面反射)和抵消能量(电磁感应在层上产生反向电磁场,可抵消部分干扰电磁波)的作用...
高校部分: 国家重点实验室2011年 说明:关于每个高校国家重点实验室数目不好说,因为有实验室有合并组建和共建之说,不过已有详细说明;里面应该有少量错误,请注意。仅供参考。 清华大学 13 新型陶瓷与...
国家重点实验室、教育部重点实验室、国家工程技术中心、教育部工程研究中心的区别
国家实验室>国家重点实验室=国防重点实验室>教育部重点实验室>省级重点实验室实验室偏重理论研究,工程中心偏重工程应用,两者严格来说不好比较。一般认为,同级别的重点实验室含金量大于工程...
. . 电磁场与电磁波知识点要求 第一章 矢量分析和场论基础 1、理解标量场与矢量场的概念; 场是描述物理量在空间区域的分布和变化规律的函数。 2、理解矢量场的散度和旋度、标量场的梯度的概念,熟练掌握散度、旋度和梯度的计算公 式和方法(限直角坐标系) 。 梯度: x y z u u u u x y z e e e , 物理意义:梯度的方向是标量 u 随空间坐标变化最快的方向; 梯度的大小:表示标量 u 的空间变化率的最大值。 yx zAA A x y z A 散度:单位空间体积中的的通量源,有时也简称为源通量密度, 高斯定理: ( ) ( )V S dV dA A S, x y z y yx xz z x y z x y z A AA AA A x y z y z z x x y A A A e e e A e e e 旋度:其数值为某点的环流量面密度的最大值, 其方向为取得环量密度最
电磁场与电磁波课程学习心得 入大三又学习到许多新的知识, 尤其对电磁场与电磁波有深深的感 觉,实话说这门课真的不太易懂。学习中有深深地难度,不过经过半 年的学习,总的来说还是深有感触。电磁场与电磁波课程体系严谨, 公式繁多,推导复杂,概念抽象,难以理解。因此在学习之前不仅要 有一个正确的学习态度, 还要根据本课程的特点有针对性的采取一些 科学的学习方法。只有两者有机地结合,才能获得富有成效的学习。 电磁场与电磁波内容复杂,理解难度大,因此十分有必要进行课 前预习,对将要学习的内容获得整体上的认知, 否则就很可能在听课 时不知所云。 本课程有大量的电磁学公式, 而课本中针对这些公式的大量繁杂 的数学推导和证明又常常使我们无所适从, 一头雾水。若一味地研究 其数学原理和证明过程就会很容易陷入其中, 迷失方向,从而忽略了 对公式本身的理解。 这样在解决实际问题的时候, 根本无法抓住问题 的本质所
电磁场电磁波
电磁场由近及远的扰动的传播形成电磁波,随时间变化着的电磁场。时变电磁场与静态的电场和磁场有显著的差别,出现一些由于时变而产生的效应。这些效应有重要的应用 ,并推动了电工技术的发展。
因磁通量变化产生感应电动势的现象:闭合电路的一部分导体在磁场里做切割磁力线的运动时,导体中就会产生电流,这种现象叫电磁感应定律 。
1820年H.C.奥斯特发现电流磁效应后,许多物理学家便试图寻找它的逆效应,提出了磁能否产生电,磁能否对电作用的问题,1822年D.F.J.阿喇戈和A.von洪堡在测量地磁强度时,偶然发现金属对附近磁针的振荡有阻尼作用。1824年,阿喇戈根据这个现象做了铜盘实验,发现转动的铜盘会带动上方自由悬挂的磁针旋转,但磁针的旋转与铜盘不同步,稍滞后。电磁阻尼和电磁驱动是最早发现的电磁感应现象,但由于没有直接表现为感应电流,当时未能予以说明 。
感应电流产生的条件
① 电路是闭合且通着的;
②穿过闭合电路的磁通量发生变化;(如果缺少一个条件,就不会有感应电流产生) .
M.法拉第提出的电磁感应定律表明,磁场的变化要产生电场。这个电场与来源于库仑定律的电场不同,它可以推动电流在闭合导体回路中流动,即其环路积分可以不为零,成为感应电动势。现代大量应用的电力设备和发电机、变压器等都与电 磁感应作用有紧密联系。由于这个作用。时变场中的大块导体内将产生涡流及趋肤效应。电工中感应加热、表面淬火、电磁屏蔽等,都是这些现象的直接应用。
磁感应现象是电磁学中最重大的发现之一,它揭示了电、磁现象之间的相互联系。法拉第电磁感应定律的重要意义在于,一方面,依据电磁感应的原理,人们制造出了发电机,电能的大规模生产和远距离输送成为可能;另一方面,电磁感应现象在电工技术、电子技术以及电磁测量等方面都有广泛的应用 。
课程资源
《工程电磁场与电磁波(第2版)》是中国大学大学MOOC上西北工业大学“电磁场与电磁波”在线开放课程的配套教材。
《工程电磁场与电磁波(第2版)》有配套的Abook数字课程,该课程包含31个教学视频。
本书是与"全国高等教育百门精品课程教材建设计划"的精品项目《电磁场与电磁波》(第4版)配套的教学指导书。本书总结了编者多年来从事"电磁场与电磁波"课程教学的体会,也汲取了电子科技大学"电磁场与波"课程组同仁的经验,还参阅了近年来国内外的相关教材和参考书。全书内容包括:矢量分析、电磁场的基本规律、静态电磁场及其边值问题的解、时变电磁场等。