PID(Process Identification)操作系统里指进程识别号,也就是进程标识符。操作系统里每打开一个程序都会创建一个进程ID,即PID。
PID(进程控制符)英文全称为Process Identifier,它也属于电工电子类技术术语。
PID是各进程的代号,每个进程有唯一的PID编号。它是进程运行时系统分配的,并不代表专门的进程。在运行时PID是不会改变标识符的,但是进程终止后PID标识符就会被系统回收,就可能会被继续分配给新运行的程序。
含义
只要运行一程序,系统会自动分配一个标识。
是暂时唯一:进程中止后,这个号码就会被回收,并可能被分配给另一个新进程。
只要没有成功运行其他程序,这个PID会继续分配给当前要运行的程序。
如果成功运行一个程序,然后再运行别的程序时,系统会自动分配另一个PID。
答:按网友的提问,不会很顺。卡卡卡。小心。
100字的限制,就不解释名词了。系统为每个进程设置PCB,分配资源;进入“就绪”状态;分配CPU,“云运行”。进程请求资源不得响应,“阻塞”;获得资源,进入“就绪”;中断或调用,进入“挂起”。运行完成...
这个要等到国产系统成熟之后,广联达才会去适配。因为这种系统的问题是国家层面的,国家没有推出国产系统,我们就算适配了,以后这个国产系统不更新了,有很多bug不能解决,反倒会影响国产系统的名声。所以这个不...
《操作系统原理与 Linux》 课程设计报告 专 业 计算机科学与技术 班 级 学 号 姓 名 指导教师 完成时间 2012年 9月 14日 成 绩 操作系统课程设计 一、设计题目 进程间通信模拟 二、设计目的 通过该题目的设计过程,了解了进程通讯的两种方式,管道通信以及消息通 信。熟悉操作系统支持的进程通信方式 三、设计要求 (1)要求实现管道通信与消息通信两种方式. (2)要求界面简单,易懂,关键代码部分要注释. (3)编程语言可以采用自己任意精通的语言 四、设计思想说明 创建一个内存共享区,实现消息管道的进程间通讯。 五、系统结构的说明 本程序是采用 MFC 框架所编写的 win32应用程序 采用 C++语言。 六、数据结构的说明 管道通信定义了一个结构体,存放管道基础信息: struct PipeStruct// 定义管道基础信息 { int UseProCount;// 当
操作系统进程通信(信号,共享存储区,消息队列)
开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。
在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。
阶跃响应是指将一个阶跃输入(step function)加到系统上时,系统的输出。稳态误差是指系统的响应进入稳态后﹐系统的期望输出与实际输出之差。控制系统的性能可以用稳、准、快三个字来描述。稳是指系统的稳定性(stability),一个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的﹔准是指控制系统的准确性、控制精度,通常用稳态误差来(Steady-state error)描述,它表示系统输出稳态值与期望值之差﹔快是指控制系统响应的快速性,通常用上升时间来定量描述。
闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈( Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。闭环控制系统的例子很多。比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。
(1)比例(P)控制
比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。
(2)积分(I)控制
在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例 积分(PI)控制器,可以使系统在进入稳态后无稳态误差。
(3)微分(D)控制
在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。
自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入 “比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例 微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例 微分(PD)控制器能改善系统在调节过程中的动态特性。
PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。一般采用的是临界比例法。利用该方法进行
PID控制算法(ProportionalIntegral-Differential,比例一积分一微分)作为一种最常规,最经典的控制算法,经过了长期的实践检验。因为这种控制具有简单的结构,对模型误差具有鲁棒性及易于操作等优点,在实际应用中又较易于整定,所以它在工业过程控制中有着广泛的应用 。有调查表明,在炼油、化工、造纸等过程超过11,000个控制器中,有超过9796的控制器是PID类控制器 ,PID控制器在嵌入式系统中的应用也在增长[6]。
Ziegler-Nichol响应曲线法 ,是根据被控对象的阶跃响应曲线获取被控对象的模型式(1),根据模型的增益K,时间常数T以及纯滞后时间,再利用如下的经验公式(2)整定PID控制器参数。
公式(1):
公式(2):
一般来说由于Z-N整定的PID控制器超调较大。为此C.C.Hang提出改进的Z-N法[8],通过给定值加权和修正积分常数改善了系统的超调。这种方法被认为是Z-N法最成功的改进。
Ziegler-Nichols临界振荡法只对开环稳定对象适用。该方法首先对被控对象施加一个比例控制器,并且其增益很小,然后逐渐增大增益使系统出现稳定振荡·则此时临界振荡增益就是比例控制器的数值K,,振荡周期就是系统的振荡周期凡,然后根据公式(3)整定PID控制器参数。
公式(3):
类似的整定方法有Cohen-Coon响应曲线方法[9],该方法同Ziegler-Nichols响应曲线法操作相同,只是整定公式不同,其整定公式如式(4):
公式(4):
为评价控制性能的优劣,定义了多种积分性能指标,基于误差性能指标的参数整定方法 是以控制系统瞬时误差函数e(θ,t)的泛函积分评价Jn(θ)为最优控制指标,它是评价控制系统性能的一类标准,是系统动态特性的一种综合性能指标,一般以误差函数的积分形式表示。其中Jn(θ)的基本形式如式(5):
公式(5):
n=0,m=0IAE
n=0,m=2ISE
n=1,m=2ISTE
Jn(θ)可以是ISE,1AE,1STE,1TAE等,然后经过寻优,搜索出一组PID控制器参数Kc,Ti,Td,使Jn(θ)的取值为最小,此时的PID控制器参数为最优。
根据内模控制系统 , 与常规反馈控制系统间存在的对应关系,必要时对模型进行降阶简化处理,便可完成IMC-PID设计
图中Gp(s)为实际被控过程对象,Gm(s)为被控过程的数学模型,即内部模型,Q(s)为内模控制器,它等于Gm(s)的最小相位部分的逆模型。u为内模控制器的输出,r,y,d分别为控制系统的输入、输出和干扰信号。
为抑制模型误差对系统的影响,增强系统的鲁棒性,在控制器中加人一个低通滤波器F(s),一般F(s)取最简单形式如下:
公式(6):
式中阶次n取决于模型的阶次以使控制器可实现,r为时间常数。则内模控制等效的控制器为:
公式(7):
对于如式(1)表示的一阶加纯滞后过程,采用一阶Pade近似,得到如下模型:
公式(8):
将式(8)的最小相位部分代入式(7),可得到如下的PID控制器参数:
公式(9):