1)使泵或风机的流量恒大于QK。如果系统中所需要的流量小于QK时,可装设再循环管或自动排出阀门,使风机的排出流量恒大于QK. ;

2)如果管路性能曲线不经过坐标原点时,改变风机的转速,也可能得到稳定的运行工况。通过风机各种转速下性能曲线中最高压力点的抛物线,将风机的性能曲线分割为两部分,右边为稳定工作区,左边为不稳定工作区,当管路性能曲线经过坐标原点时,改变转速并无效果,因此时各转速下的工作点均是相似工况点。

3)对轴流式风机采用可调叶片调节。当系统需要的流量减小时,则减小其安装角,性能曲线下移,临界点向左下方移动,输出流量也相应减小。

4)最根本的措施是尽量避免采用具有驼峰形性能曲线的风机,而采用性能曲线平直向下倾斜的风机。

喘振造价信息

市场价 信息价 询价
材料名称 规格/型号 市场价
(除税)
工程建议价
(除税)
行情 品牌 单位 税率 供应商 报价日期
消声措施 包括伸缩器、隔原件及隔器、吸声材料、管道支架等 查看价格 查看价格

13% 上海熊猫机械(集团)有限公司
倒流防止 HS41X-16Q DN125 查看价格 查看价格

盾安阀门

13% 浙江迪艾智控科技股份有限公司
倒流防止 DN100 查看价格 查看价格

方兴

13% 安徽方兴实业股份有限公司
倒流防止 DN150 查看价格 查看价格

方兴

13% 安徽方兴实业股份有限公司
倒流防止 DN200 查看价格 查看价格

方兴

13% 安徽方兴实业股份有限公司
倒流防止 DN250 查看价格 查看价格

方兴

13% 安徽方兴实业股份有限公司
倒流防止 DN300 查看价格 查看价格

方兴

13% 安徽方兴实业股份有限公司
倒流防止 HS41X-16Q DN80 查看价格 查看价格

盾安阀门

13% 浙江迪艾智控科技股份有限公司
材料名称 规格/型号 除税
信息价
含税
信息价
行情 品牌 单位 税率 地区/时间
振动沉拔桩机 力400(kN) 查看价格 查看价格

台班 韶关市2010年7月信息价
振动沉拔桩机 力600(kN) 查看价格 查看价格

台班 韶关市2010年7月信息价
振动打拔桩机 力400(kN) 查看价格 查看价格

台班 韶关市2010年7月信息价
振动沉拔桩机 力[400](KN) 查看价格 查看价格

台班 韶关市2009年5月信息价
振动沉拔桩机 力[400](KN) 查看价格 查看价格

台班 韶关市2009年3月信息价
振动沉拔桩机 力300(kN) 查看价格 查看价格

台班 韶关市2010年7月信息价
振动沉拔桩机 力500(kN) 查看价格 查看价格

台班 韶关市2010年7月信息价
振动沉拔桩机 力[400](KN) 查看价格 查看价格

台班 韶关市2009年11月信息价
材料名称 规格/需求量 报价数 最新报价
(元)
供应商 报价地区 最新报价时间
措施 措施费(吊装费、场地清理、安全文明施工费、脚手架、超高降效等为了保证施工质量及安全所采取的任何措施费用)|1项 3 查看价格 广州祥盛钢结构工程有限公司 广东   2021-04-28
OPGW光缆防鞭,外径=13.5|1个 1 查看价格 山东海虹电力器材有限公司 全国   2022-10-17
应急灯 辉|1只 1 查看价格 中山市振华消防设备有限公司 广东  中山市 2017-10-09
ADSS防鞭(缆经19.1-21)|1个 1 查看价格 山东海虹电力器材有限公司 全国   2022-10-17
ADSS防鞭(缆经15.1-17)|1个 1 查看价格 山东海虹电力器材有限公司 全国   2022-10-17
ADSS防鞭(缆径≤13)|1个 1 查看价格 山东海虹电力器材有限公司 全国   2022-10-17
OPGW光缆防鞭,外径=18.6|1个 1 查看价格 山东海虹电力器材有限公司 全国   2022-10-17
法碎石桩 法碎石桩|1m 1 查看价格 安瑞通(北京)建筑加固工程有限公司 广东  广州市 2015-07-27

轴流风机在叶轮进口处装置喘振报警装置,该装置是由一根皮托管布置在叶轮的前方,皮托管的开口对着叶轮的旋转方向。皮托管是将一根直管的端部弯成90°(将皮托管的开口对着气流方向),用一U形管与皮托管相连,则U形管(压力表)的读数应该为气流的动能(动压)与静压之和(全压)。在正常情况下,皮托管所测到的气流压力为负值,因为它测到的是叶轮前的压力。但是当风机进入喘振区工作时,由于气流压力产生大幅度波动,所以皮托管测到的压力亦是一个波动的值。为了使皮托管发送的脉冲压力能通过压力开关发出报警信号,皮托管的报警值是这样规定的:当动叶片处于最小角度位置(-30°) 用一U形管测得风机叶轮前的压力再加上2000Pa压力,作为喘振报警装置的报警整定值。当运行工况超过喘振极限时,通过皮托管与差压开关,利用声光向控制台发出报警信号,要求运行人员及时处理,使风机返回正常工况运行。

为防止轴流风机在运行时工作点落在旋转脱流、喘振区内,在选择轴流风机时应仔细核实风机的经常工作点是否落在稳定区内,同时在选择调节方法时,需注意工作点的变化情况,动叶可调轴流风机由于改变动叶的安装角进行调节,所以当风机减少流量时,小风量使轴向速度降低而造成的气流冲角的改变,恰好由动叶安装角的改变得以补偿,使气流的冲角不至于增大,于是风机不会产生旋转脱流,更不会产生喘振。动叶安装角减小时,风机不稳定区越来越小,这对风机的稳定运行是非常有利的。

风机在喘振区工作时,流量急剧波动,产生气流的撞击,使风机发生强烈的振动,噪声增大,而且风压不断晃动,风机的容量与压头越大,则喘振的危害性越大。故风机产生喘振应具备下述条件:

a)风机的工作点落在具有驼峰形Q-H性能曲线的不稳定区域内;

b)风道系统具有足够大的容积,它与风机组成一个弹性的空气动力系统;

c)整个循环的频率与系统的气流振荡频率合拍时,产生共振。

旋转脱流与喘振的发生都是在Q-H性能曲线左侧的不稳定区域,所以它们是密切相关 的,但是旋转脱流与喘振有着本质的区别。旋转脱流发生在风机Q-H性能曲线峰值以左的整个不稳定区域;而喘振只发生在Q-H性能曲线向右上方倾斜部分。旋转脱流的发生只决定叶轮本身叶片结构性能、气流情况等因素,与风道系统的容量、形状等无关。旋转对风机的正常运转影响不如喘振这样严重。

风机在运行时发生喘振,情况就不相同。喘振时,风机的流量、全压和功率产生脉动或大幅度的脉动,同时伴有明显的噪声,有时甚至是高分贝的噪声。喘振时的振动有时是很剧烈的,损坏风机与管道系统。所以喘振发生时,风机无法运行。

喘振防止措施常见问题

  • 常见点焊焊接缺陷及防止措施

    1、外观缺陷:外观缺陷(表面缺陷)是指不用借助于仪器,从工件表面可以发现的缺陷。常见的外观缺陷有咬边、焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。单面焊的根部未焊透等。 A、咬边是指沿着焊趾,...

  • 压力容器腐蚀原因有哪些防止措施有那些

    有化学腐蚀和电化学腐蚀还有应力腐蚀。化学腐蚀是金属与接触到的物质直接发生氧化还原反应而被氧化损耗的过程。电化学腐蚀是金属和电解质组成两个电极,组成腐蚀原电池。应力腐蚀是材料、机械零件或构件在静应力(主...

  • 高层建筑设计时对墙、梁、柱变形的防止措施?

    1.首先设计师应该仔细验算荷载 2.严格按照规范留置施工变形缝 3.参照成功及失败的经验工程

所谓喘振,就是当具有“驼峰”形Q-H性能曲线的风机在曲线临界点以左工作时,即在不稳定区工作时,风机的流量和能头在瞬间内发生不稳定的周期性反复变化的现象。风机产生的最大能头将小于管路中的阻耗,流体开始反方向倒流,由管路倒流入风机中(出现负流量),由于风机在继续运行,所以当管路中压力降低时,风机又重新开始输出流量,只要外界需要的流量保持小于临界点流量时,上述过程又重复出现,即发生喘振。

轴流风机性能曲线的左半部具有一个马鞍形的区域,在此区段运行有时会出现风机的流量、压头和功率的大幅度脉动,风机及管道会产生强烈的振动,噪声显著增高等不正常工况,一般称为“喘振”,这一不稳定工况区称为喘振区。实际上,喘振仅仅是不稳定工况区内可能遇到的现象,而在该区域内必然要出现的则是旋转脱流或称旋转失速现象。这两种工况是不同的,但是它们又有一定的关系。轴流风机Q-H性能曲线,若用节流调节方法减少风机的流量,如风机工作点在K点右侧,则风机工作是稳定的。当风机的流量Q < QK时,这时风机所产生的最大压头将随之下降,并小于管路中的压力,因为风道系统容量较大,在这一瞬间风道中的压力仍为HK,因此风道中的压力大于风机所产生的压头使气流开始反方向倒流,由风道倒入风机中,工作点由K点迅速移至C点。但是气流倒流使风道系统中的风量减小,因而风道中压力迅速下降,工作点沿着CD线迅速下降至流量Q=0时的D点,此时风机供给的风量为零。由于风机在继续运转,所以当风道中的压力降低倒相应的D点时,风机又开始输出流量,

为了与风道中压力相平衡,工况点又从D跳至相应工况点F。只要外界所需的流量保持小于QK,上述过程又重复出现。如果风机的工作状态按F-K-C-D-F周而复始地进行,这种循环的频率如与风机系统的振荡频率合拍时,就会引起共振,风机发生了喘振。

一般的处理原则是调整负荷、关小高出力风机的导叶开度使风机出力相近,减小负荷量的变化率,加强进风段和出风段的风压探测和信息反馈控制,再根据上面所说的可能原因进行查找再作相应处理。

烟风道积灰堵塞或烟风道挡板开度不足引起系统阻力过大。;两风机并列运行时导叶开度偏差过大使开度小的风机落入喘振区运行(我们常碰到的情况是风机导叶执行机构连杆在升降负荷时脱出,使两风机导叶调节不同步引起大的偏差);风机长期在低出力下运转。

出现喘振的风机大致现象如下:

1 电流减小且频繁摆动、出口风压下降摆动。

2 风机声音异常噪声大、振动大、机壳温度升高、引送风机喘振动使炉膛负压波动燃烧不稳。

流体机械及其管道中介质的周期性振荡,是介质受到周期性吸入和排出的激励作用而发生的机械振动。

压气机喘振是指气流沿压气机轴线方向发生的低频率(通常只有几赫兹或十几赫兹)、高振幅(强烈的压强和流量波动)的气流振荡现象。这种低频率高振幅的气流振荡是一种很大的激振力来源,它会导致压气机部件的强烈机械振动和热端超温。并在很短的时间内造成部件的严重损坏,所以在任何状态下都不允许压气机进入喘振区工作。

喘振喘振过程

例如,泵或压缩机运转中可能出现的喘振过程是:

流量减小到最小值时出口压力会突然下降,下游管道内压力反而高于出口压力,于是被输送介质倒流回机内,直到出口压力升高重新向管道输送介质为止;当管道中的压力恢复到原来的压力时,流量再次减少,管道中介质又产生倒流,如此周而复始。

喘振产生原因

喘振的产生与流体机械和管道的特性有关,管道系统的容量越大,则喘振越强,频率越低。产品一般都附有压力-流量特性曲线,据此可确定喘振点、喘振边界线或喘振区。流体机械的喘振会破坏机器内部介质的流动规律性,产生机械噪声,引起工作部件的强烈振动,加速轴承和密封的损坏。一旦喘振引起管道、机器及其基础共振时,还会造成严重后果。为防止喘振,必须使流体机械在喘振区之外运转。在压缩机中,通常采用最小流量式、流量-转速控制式或流量-压力差控制式防喘振调节系统。当多台机器串联或并联工作时,应有各自的防喘振调节装置。

喘振,顾名思义就象人哮喘一样,风机出现周期性的出风与倒流,相对来讲轴流式风机更容易发生喘振,严重的喘振会导致风机叶片疲劳损坏。

失速和喘振是两种不同的概念,失速是叶片结构特性造成的一种流体动力现象,它的一些基本特性,例如:失速区的旋转速度、脱流的起始点、消失点等,都有它自己的规律,不受风机系统的容积和形状的影响。

喘振是风机性能与管道装置耦合后振荡特性的一种表现形式,它的振幅、频率等基本特性受风机管道系统容积的支配,其流量、压力功率的波动是由不稳定工况区造成的,但是试验研究表明,喘振现象的出现总是与叶道内气流的脱流密切相关,而冲角的增大也与流量的减小有关。所以,在出现喘振的不稳定工况区内必定会出现旋转脱流。 2100433B

喘振防止措施文献

公路高边坡防止措施 公路高边坡防止措施

格式:pdf

大小:234KB

页数: 25页

评分: 4.6

公路高边坡防止措施 边坡是指线路近旁的天然斜坡或经过施工开挖形成的路堑斜坡、 填筑形成的方坡 等等。高边坡灾害是我们道路工程中危害较大的一个地方, 所以今天小编特意过 来和大家分享分享高边坡的防治技术都有哪些。 一、边坡的变形特征 1、公路边坡是将地质体的一部分改造成人为工程设施,因此其稳定性取决于 自然山坡的稳定状况 (稳定、不稳定、极限平衡 )、地质条件 (地层岩性、地质构 造、坡体结构、岩体结构、水文地质条件、风化程度等 )和人为改造的程度 (开挖 深度、坡形、坡率等 )。 2、人工边坡是对自然坡体的改造,改变了自然坡体的应力状态和地下水的渗流 条件,而且是在短短几个月内改造完成的。 自然坡体的应力调整有一个过程, 强 度低的软弱岩层调整较快, 常在施工期就发生变形; 强度高的坚硬岩层调整较慢, 或可自身稳定,或在 1~3年后发生变形。只有当人工边坡对其改变不大时,才 可保持稳定,否

立即下载
建筑工地光污染防止措施 建筑工地光污染防止措施

格式:pdf

大小:234KB

页数: 1页

评分: 4.6

建筑工地光污染防止措施 1.对光污染,将采取“转、遮、控、禁”措施,严格要求夜间施工须 避免灯光直射居民区, 焊割等强光源作业须采取遮挡措施, 照明系统 的开关控制采用光控措施。 2.加强规划和管理,改善工地照明条件等,以减少光污染的来源。 3. 对有红外线和紫外线污染的场所采取必要的安全防护措施。 4.工人焊接操作时需采用个人防护措施, 主要是戴防护眼镜和防护面 罩、防护服等。把光污染的危害消除在萌芽状态。已出现症状的应定 期去医院眼科作检查,及时发现病情 , 以防为主,防治结合 5.光污染虽未被列入环境防治范畴, 但它的危害显而易见, 并在日益 加重和蔓延。因此,工人在施工中应注意,防止各种光污染对健康的 危害,避免过长时间接触污染。 6对光的污染有一个清醒的认识,要注意控制光污染的源头,要加强 预防性卫生监督 ,做到防患于未然 .

立即下载

喘振控制的目的就是要在喘振出现先兆时将其消除,始终保证压缩机工况点运行在喘振线以下,即安全区域内。防喘振控制就是利用这一原理,在喘振线以下设置一条防喘振线,防止喘振的发生。

如图1所示,防喘振控制线是喘振控制的基准线,一般将喘振线对应的排气压力下移8%~10%作为防喘振线,使工况点始终运行在防喘振线以下。如果工况点在防喘振线以上,控制系统自动调节防喘振阀门开度,降低压缩机出口压力,防止喘振发生。防喘振线是一个动态折线函数,

随着工况点的压力变化而做动态的变化,其调节过程也是一个动态响应过程。为了保证机组的安全,通常在喘振线和防喘振线之间设置一条放空线,用于机组危险时刻,立即卸压,通常将喘振线下移2%~ 3%作为放空线。因此,防喘振控制是透平压缩机的重要控制内容。

因出口流量是压缩机入口压差(喉部压差)的函数f(Δp),而实际采用的方法是实测出的压缩机喉部压差(Δp)与排气压力p的函数关系,得出压缩机的喘振曲线,即在不同的喉部压差下,测量对应的喘振压力,将测量的点用折线连接即可绘出横坐标为喉部差压,纵坐标为排气压力的曲线,称为该机组的喘振线。为了安全实际中将喘振线纵坐标参数下移3%作为放空线,工况点在放空线以下,系统根据喘振线自动调节喘振阀状态,如果工况点在放空线以上,则放空阀全开,系统卸压,以达到防止喘振的目的。通常实测喘振线纵坐标参数下移8%得到该机组的防喘振线,当出口压力到达防喘振线时,控制系统自动调节防喘振阀开度,降低出口压力来防止喘振发生 。

经入口温度补偿校正后的喉部压差的计算函数f(Δp、T1)作为防喘振调节器计算压力设定值SV,压缩机实际出口压力PV作为测量值,防喘振调节器通过对设定值和测量比较来调节喘振阀门实现压缩机的防喘振控制。系统采集喉部差压、入口温度进行温度力补偿,将补偿过的差压,送给防喘振折线函数进行计算,得出该工况点下的排气压力上限,将该上限作为PID的设定值,将经过换算的排气压力测量值作为过程测量值。如图2所示,PID根据设定值和过程测量值偏差的大小及负号进行可变增益和可变积分的计算实现防喘振阀的快开慢关。由于防喘振阀为气关阀,故将PID调节输出值与手动压力调节制进行信号低选,即开度信号优先。当压缩机运行在安全域时,防喘振控制器的输出为最大,一般为20mA,防喘振调节阀门处于完全关闭状态 。

如图3所示,系统设置了放空阀闭锁和快速打开程序。这两个程序由放空阀闭锁逻辑和打开逻辑组成。在压缩机进入运行状态时,没有执行“自动操作调节器输入”之前,调节器输出闭锁,放空阀全开,保证机组安全启动。当机组运行不正常,需要进入“安全运行”或停机时,控制逻辑给出联锁信号使调节器由原来的输出跳变到最小值0.0的值(4mA),使放空阀在2s内快速打开。当实际出口压力接近防喘振线时,系统通过和喘振报警设定值比较给出喘振预报警提示。防喘振控制调节系统与防喘振保护系统存在着密切的联系,这主要体现在放空阀的调节与控制上。

当通过静叶调节压力不能满足工艺的要求时,通过低选功能来实现防喘振控制器对放空阀的控制作用,即在不同的工况下,进行选择性调节。所谓选择性调节是指两个以上调节器的输出迭加后,按预定高或低选关系选择控制信号,以适应不同的工况。当工况异常时,防喘振器控制调节控制放空阀,实现机组的防喘振保护功能,此时,压力调节器控制器处于待命状态,直到工况恢复正常后,压力调节器再次控制放空阀。这一功能主要靠低选逻辑来实现放空阀门对压力辅助调节的作用。2100433B

喘振是透平式压缩机(也叫叶片式压缩机)在流量减少到一定程度时所发生的一种非正常工况下的振动。离心式压缩机是透平式压缩机的一种形式,喘振对于离心式压缩机有着很严重的危害。

防喘振控制的目的就是要始终保证工况点运行在防喘振线以下的安全区域内。从喘振的形成过程可以看出,在一定的排气压力下,防止压缩机流量过小就能避免喘振发生。降低系统阻力是避免喘振的一项重要措施,然而工艺管网的阻力是一定的,所以实际中采用降低排气压力(放空)来增大压缩机流量,消除喘振。

喘振相关推荐
  • 相关百科
  • 相关知识
  • 相关专栏