是一种不用能源,不排污染,利用车辆重压力来转换成旋转动力带动发电机发电,给本车提供30-50%的自发电装置。适用于各种电动力火车、电动力汽车、油电两用火车、汽车、电动摩托车、电动自行车,脚踏电动两用自行车上安装使用。 其主要原理结构是:在同一轴上安装发电机、惯性轮、飞轮,飞轮齿与安装有偏心轮的叉轴上的齿板紧密结合,偏心轮与道路接触。当车辆运动时偏心轮就转动,使叉轴上下运动,叉轴上的齿板就推动飞轮同时使惯性轮、发电机转动,由于在飞轮和惯性轮的作用下,由偏心轮产生的周期性重压力转换的动力就能使发电机长时间快速转动发电,供本车使用和充入电瓶待用。
按照设备重量套安装定额乘系数0.5
大体都一样 的安装布置 无论机组大小
价格有点偏高,上柴发电机组要经济很多!
包括增速齿轮箱、双馈发电机系统和部分功率变换器的风力发电机组。参见“风力发电机组”(331页)。
恒速恒频风力发电机组
恒速恒频风力发电机组主要分为笼型感应发电机恒速恒频风力发电机组和电励磁同步发电机恒速恒频风力发电机组.
具有以下特点:
(l)机组结构简单,适合在野外环境工作;
(2)由于转速不变.无法进行最大功率点跟踪控制,发电效率降低;·
(3)当风速快速升高时,由于转速不变,风能将通过浆叶传递给主轴、齿轮箱和发电机等部件,产生很大的机械应力,从而引起这些部件疲劳损坏。该类型风力发电机组由于在低风速区域效率低,主要应用于小功率、机组容量低于600kw的系统。
恒速恒频风力发电机组在正常发电过程中,发电机定子绕组直接接入电网,其转速由电网频率确定.风力发电机组的转速在整个运行风速范围内保持恒定。
其优点是:
不需要采用大功率全控开关器件进行变频控制,降低整个机组的成本和控制复杂程度;
缺点是:
整个风力发电机组的转速恒定,使得机组在低风速区间内不能以员位叶尖转速比运行,造成低风速区间内的能量损失 。
变速恒频风力发电机组
变速恒频风力发电机组由于其转速能随着风速的变化而变化.可以保证机组在低风速区域获得最大的风能利用串.其效率比恒速恒频风力发电机组高很多。
目前,变速恒频风力发电机组主要分为双馈异步风力发电机组、永磁直驱风力发电机组和电励磁同步半直驱风力发电机组。目的,双馈异步风力发电机组为变速桓频风力发电机组中的主流机型。
变速恒频风力发电机组在正常运行过程中,其转速随着风速变化。
其优点是:
在额定转速以下,风力发电机组的转速跟随风速变化,保证机组运行在最佳叶尖转速比点,使机组在低风速区间内获得最大风能利用率;
其缺点是:
由于电网频率基本不变,而机组的转速在一定范围内变化,这就要求在发电机与电网之间增加全控变流器.以实现电网频率与发电机转速之间的解耦控制,因此,风力发电机组的成本和控制复杂程度会相应增大。
由于风电场一年内大部分时间段的风速都在额定风速以下,提高额定风速以下风力发电机组的风能利用效率是提高机组年发电量的关键因素。另外,大功率的全控电力电子器件的出现,使得现代风力发电机组大都采用变速恒频风力发电机组 。
风力发电电源由风力发电机组、支撑发电机组的塔架、蓄电池充电控制器、逆变器、卸荷器、并网控制器、蓄电池组等组成;风力发电机组包括风轮、发电机;风轮中含叶片、轮毂、加固件等组成;它有叶片受风力旋转发电、发电机机头转动等功能。风速选择:低风速风力发电机能有效提升风力发电机在低风速区域的风能利用,在年平均风速小于3.5m/s,且无台风的地区,推荐选用低风速产品。
风力发电机组进行发电时,都要保证输出电频率恒定。这无论对于风机并网发电还是风光互补发电都非常必要。 要保证风电的频率恒定,一种方式就是保证发电机的恒定转速,即恒速恒频的运行方式,因为发电机由风力机经过传动装置进行驱动运转,所以这种方式无疑要恒定风力机的转速,这种方式会影响到风能的转换效率;另一种方式就是发电机转速随风速变化,通过其它的手段保证输出电能的频率恒定,即变速恒频运行。风力机的风能利用系数跟叶尖速比(叶轮尖的线速与风速的比值)有关,存在某一确定的叶尖速比,使Cp达到最大值。因此,在变速恒频运行方式下,风力机和发电机的转速可在很大范围内变化而不影响输出电能的频率。因此风力发电机组经常用变速恒频法保证输出频率恒定 。