齿轮材料的重要热处理特性是:指钢接受淬火而获得马氏体的能力,不同钢种接受淬火的能力不同。
淬透性
含义:指钢接受淬火而获得马氏体的能力,不同钢种接受淬火的能力不同。
淬透性不同的钢,淬火后得到的淬透层深度不同,从而沿截面分布的金相组织以及机械性能也不同。淬透层深度是指由淬火表面马氏体到50%马氏体层的深度。全部淬透的工件通常表面残留着拉力,容易产生变形和开裂,同时对工作的疲劳性能也不利。
设计时考虑要点:
1.零件尺寸越大,内部热容量越大,淬火时零件的冷却速度越慢,因此,淬透层越薄,性能越差,这种现象叫做"钢材的尺寸效应"。所以,不能根据小尺寸的性能数据用于大尺寸零件的强度计算,而必须考虑钢材的淬透性。
2.大截面或结构复杂的齿轮采用多元合金钢,保证足够而适当的淬透性,保证沿整个截面有良好的综合机械性能,同时,减少变形,防止开裂。
3.对碳钢齿轮,由于碳钢的淬透性低,在设计大尺寸时,正火和调质效果相似,而正火可降低成本,不必要求调质。
4.大模数高质齿轮由于受到钢材淬透性的限制,应当开齿后调质。
淬硬性
含义:指钢在正常淬火条件下,以超过临界冷却速度所形成马氏体组织能够达到最高硬度。
设计时考虑要点:淬硬性与淬透性不同,它主要取决于钢中的含碳量。钢中含碳量越高,淬火后硬度越高,而与合金元素关系不大。所以,淬火硬度高的钢不一定就淬透性高,而硬度低的钢,也可能具有高的淬透性。
过热敏感性
含义:指钢在正常淬火条件下,以超过临界冷却速度所形成马氏体组织能够达到最高硬度。
设计时考虑要点:淬硬性与淬透性不同,它主要取决于钢中的含碳量。钢中含碳量越高,淬火后硬度越高,而与合金元素关系不大。所以,淬火硬度高的钢不一定就淬透性高,而硬度低的钢,也可能具有高的淬透性。
回火稳定性
含义:指钢在正常淬火条件下,以超过临界冷却速度所形成马氏体组织能够达到最高硬度。
设计时考虑要点:淬硬性与淬透性不同,它主要取决于钢中的含碳量。钢中含碳量越高,淬火后硬度越高,而与合金元素关系不大。所以,淬火硬度高的钢不一定就淬透性高,而硬度低的钢,也可能具有高的淬透性。
变形开裂倾向
含义:指钢在加热和冷却过程中产生热应力和组织应力,其综合作用超过钢的σs或σb而产生变形开裂的倾向。
设计时考虑要点:加热或冷却速度太快,加热和冷却不均匀都容易造成工件变形甚至开裂,因此:
按我们平时的理解,这个刚才超过820都算高温了,但就是这样,一般的淬火温度都要比国内的高,如果是进口钢材我没什么好说的,如果是国内钢材,组织粗大是肯定的,但这个产品也许对这个要求不像我们想想的那么严重...
要求耐磨,速度一定较高。高速中等载荷、无猛烈冲击——合金调质钢:40Cr、40MnB、40Mn VB高速中等载荷、有冲击——合金渗碳钢:20Cr、20Mn2B、20MnVB、20CrMnTi用40Cr...
齿轮材料一般是42CrMo 或者17CrNiMo6
车床主轴箱齿轮的材料选择及热处理工艺
预先热处理对金属材料性能有明显影响。采用不同的预先热处理工艺对20MnCr5钢工程机械齿轮材料试样进行了处理,并进行了显微组织、表面硬度和耐磨损性能的测试与分析。结果表明,与常规正火处理相比,等温正火处理、均匀化处理后等温正火处理均能有效提高材料的的表面硬度和耐磨损性能,尤其是均匀化处理后等温正火处理的效果更为显著。与常规正火处理相比,等温正火处理25℃试样的磨损体积减小22%、300℃磨损体积减小37%;均匀化处理后等温正火处理试样25℃磨损体积减小58%、300℃磨损体积减小70%。20MnCr5钢工程机械齿轮材料的预先热处理工艺优选为900℃×2h均匀化退火后950℃×2h+600℃×1h等温正火的预先热处理。
渗碳齿轮的热处理变形直接影响到齿轮的精度、强度、噪声和寿命,即使在渗碳热处理后加上磨齿工序,变形仍然要降低齿轮的精度等级。影响渗碳热处理变形的因素较多,只有控制各方面的因素才能将变形控制到较小程度。控制齿轮变形也必须在制造齿轮的全过程中设法去解决。
(1)齿轮材料冶金因素对变形的影响
试验表明,钢的淬透性越高.变形越大。当心部硬度高于40HRC时,变形会明显增大。因此,对钢的淬透性带有一定的要求,淬透性带越窄.则变形越稳定,要钢厂提供"低、稳变形"钢材。A1/N含量比控制在1~2.5范围内,可使淬进性带变窄、减小变形。另外,材料的方框偏析及带状组织影响齿轮花键孔的不均匀变形及渗碳不均匀。
(2)预备热处理对齿轮变形的影响
正火硬度过高、混晶、大量索氏体或魏氏组织都会使内孔变形增大,所以要用控温正火或等温退火来处理锻件。
(3)渗碳工艺对变形的影响
温度的均匀性.碳层的均匀性,冷却介质温度的均匀件都影响齿轮变形,同时渗碳温度越高,渗碳层越厚.油温低、齿轮变形大。所以要改进设备,优化工艺,提高齿轮热处理质量。
(4)淬火对变形的影响
淬火冷却行为是影响齿轮变形最重要的因素,热油淬火比冷油淬火变形小,般控制在100℃±120℃.油的冷却能力对变形也是至关重要的。搅拌方式和烈度均影响变形,上淬火压床淬火的盘状齿轮,按各种齿轮的变形情况.调整冲火压床参数减小变形,调整内、外压模及胀心块的压力及各段喷油量的大小及上作台面来控制变形。
第1章齿轮热处理概述
1.1齿轮类别及其性能要求
1.1.1齿轮的类别
1.1.2齿轮的性能要求
1.2典型齿轮材料及其热处理方法
1.2.1齿轮用钢的选择
1.2.2典型齿轮材料及其热处理方法
1.3齿轮热处理设备和生产用材料简介
1.3.1齿轮热处理设备
1.3.2齿轮热处理生产使用的材料及其分类
1.4齿轮热处理常见缺陷一览
第2章齿轮热处理典型缺陷分析与对策
2.1齿轮热处理加热缺陷分析与对策
2.1.1齿轮氧化与脱碳缺陷分析与对策
2.1.2齿轮欠热、过热和过烧缺陷分析与对策
2.1.3齿轮晶粒粗化与混晶缺陷分析与对策
2.1.4齿轮脱碳、过热与过烧的检验
2.2齿轮热处理冷却缺陷分析与对策
2.2.1齿轮淬火硬度及淬硬层深度缺陷分析与对策
2.2.2齿轮热处理变形缺陷分析与对策
2.2.3齿轮热处理裂纹缺陷分析与对策
2.3齿轮热处理变形与裂纹的检测
2.3.1齿轮热处理变形的检测
2.3.2齿轮热处理裂纹的检测
2.4齿轮热处理力学性能缺陷分析与对策
2.4.1抗拉强度缺陷分析与对策
2.4.2疲劳强度缺陷分析与对策
第3章齿轮的普通热处理缺陷分析与对策
3.1齿轮的退火与正火缺陷分析与对策
3.1.1退火缺陷分析与对策
3.1.2正火缺陷分析与对策
3.2齿轮退火及正火的质量检验项目及要求
3.2.1表面质量
3.2.2表面硬度
3.2.3变形量
3.2.4金相检验
3.3齿轮的淬火与回火缺陷分析与对策
3.3.1中碳钢和中碳合金钢齿轮淬火与回火硬度缺陷
分析与对策
3.3.2中碳钢和中碳合金钢齿轮淬火与回火金相组织缺陷
分析与对策
3.3.3中碳钢和中碳合金钢齿轮淬硬层缺陷分析与对策
3.3.4中碳钢和中碳合金钢齿轮淬火与回火其他缺陷分析与对策…
3.3.5中碳钢和中碳合金钢齿轮淬火变形分析与对策
3.3.6中碳钢和中碳合金钢齿轮淬火裂纹分析与对策
3.4齿轮淬火与回火的质量检验项目与要求
3.4.1外观检查
3.4.2表面硬度
3.4.3金相组织
3.4.4变形
第4章调质齿轮的热处理缺陷分析与对策
4.1常用调质齿轮钢材及其热处理
4.1.1合金结构钢
4.1.2优质碳素结构钢
4.1.3铸造碳钢及合金铸钢
4.2调质齿轮硬度缺陷分析与对策
4.2.1调质齿轮硬度低原因分析与对策
4.2.2调质齿轮硬度不均原因分析与对策
4.3齿轮调质深度不足原因分析与对策
4.4大模数齿轮的开齿调质工艺
4.5焊接齿轮的调质处理
4.6调质齿轮淬火裂纹分析与对策
4.7齿轮调质处理的质量检验
4.7.1调质齿轮的检验项目、内容及方法
4.7.2调质齿轮的力学性能及淬透性检验
4.7.3调质齿轮的金相组织检验
第5章齿轮的化学热处理缺陷分析与对策
5.1齿轮的渗碳热处理缺陷分析与对策
5.1.1齿轮的气体和固体渗碳热处理缺陷分析与对策
5.1.2齿轮的气体碳氮共渗缺陷分析与对策
5.1.3齿轮的渗碳热处理变形分析与对策
5.1.4齿轮的渗碳热处理裂纹分析与对策
5.1.5渗碳齿轮的质量检验项目、内容及方法
5.2齿轮的渗氮热处理缺陷分析与对策
5.2.1气体渗氮齿轮材料及其热处理
5.2.2气体渗氮齿轮硬度缺陷分析与对策
5.2.3气体渗氮齿轮金相组织缺陷分析与对策
5.2.4气体渗氮齿轮渗层深度缺陷分析与对策
5.2.5气体渗氮齿轮其他热处理缺陷分析与对策
5.2.6气体渗氮齿轮的质量检验项目及要求
5.2.7离子渗氮齿轮热处理缺陷分析与对策
5.2.8齿轮离子渗氮的质量检验项目、内容及要求
5.2.9齿轮的气体氮碳共渗缺陷分析与对策
5.2.10齿轮气体氮碳共渗的质量检验项目及要求
5.2.11渗氮齿轮热处理变形分析与对策
5.2.12渗氮齿轮表面裂纹分析与对策
第6章齿轮的感应热处理缺陷分析与对策
6.1感应淬火齿轮材料及其热处理方法
6.2感应淬火齿轮硬度缺陷分析与对策
6.2.1感应淬火齿轮表面硬度不足和出现软点或软带原因
分析与对策
6.2.2感应淬火齿轮表面硬度过高或过低原因分析与对策
6.2.3感应淬火齿轮表面硬度不均原因分析与对策
6.3感应淬火齿轮金相组织缺陷分析与对策
6.4感应淬火齿轮硬化层缺陷分析与对策
6.4.1感应淬火齿轮硬化层过浅或过深原因分析与对策
6.4.2感应淬火齿轮硬化层不均原因分析与对策
6.4.3感应淬火齿轮硬化层深度变化超过要求范围原因
分析与对策
6.5感应淬火齿轮其他热处理缺陷分析与对策
6.5.1防止感应淬火齿轮淬硬区域不符合要求的措施
6.5.2感应淬火齿轮局部烧熔麻点原因分析与对策
6.5.3感应淬火齿轮硬化层或尖角剥落原因分析与对策
6.5.4感应淬火齿轮硬化区分布不合理及硬度低原因
分析与对策
6.5.5齿轮感应淬火加热不均匀原因分析与对策
6.6感应淬火齿轮的返修
6.7齿轮的感应淬火变形原因分析与对策
6.7.1齿轮的感应淬火变形原因分析
6.7.2减小与控制齿轮感应淬火变形的措施
6.7.3齿轮的其他感应淬火变形控制方法
6.8齿轮的感应淬火裂纹原因分析与对策
6.8.1齿轮材料不良造成的感应淬火裂纹原因分析与对策
6.8.2齿轮设计或机械加工不当造成的感应淬火裂纹原因
分析与对策
6.8.3齿轮淬火加热温度过高或加热不均造成的感应淬火裂纹
原因分析与对策
6.8.4齿轮淬火冷却条件不良造成的感应淬火裂纹原因
分析与对策
6.8.5操作不良造成的齿轮感应淬火裂纹原因分析与对策
6.9高频淬火齿轮产生废品原因分析与对策
6.10感应淬火齿轮的质量检验项目及要求
第7章齿轮的失效原因分析与对策
7.1齿轮的失效形式
7.2齿轮齿面的失效原因分析与对策
7.2.1齿轮齿面磨损原因分析与对策
7.2.2齿轮齿面塑性变形原因分析与对策
7.2.3齿轮齿面胶合原因分析与对策
7.2.4齿轮齿面点蚀原因分析与对策
7.2.5齿轮硬化层剥落(或称深层剥落、硬化层压碎)原因
分析与对策
7.3齿轮断裂原因分析与对策
7.4齿轮的其他失效原因分析与对策
7.4.1齿轮轮齿崩齿原因分析与对策
7.4.2齿轮轮齿的末端损坏原因分析与对策
7.5中重型载货汽车弧齿锥齿轮失效原因分析与对策
7.5.1弧齿锥齿轮制造问题造成的失效原因分析与对策
7.5.2弧齿锥齿轮装配及使用问题造成的失效原因分析
与对策
附录
附录A侵蚀剂
附录B热处理相关标准目录
附录C国内外常用结构钢对照表
附录D不同布氏硬度试验条件下施加的试验力(GB/T 231.1—2009《金属布氏硬度试验第1部分:试验方法》)
附录E洛氏硬度标尺及适用范围(GB/T 230.1—2009《金属洛氏硬度试验第1部分:试验方法》)
附录F维氏硬度负荷与试验力
参考文献 2100433B