中文名 | 超精机床高速在线激光测量的交互干涉技术 | 项目类别 | 青年科学基金项目 |
---|---|---|---|
项目负责人 | 房丰洲 | 依托单位 | 天津大学 |
通过对声光调制技术和可调大频差以频激光的研究,研制出将激光管、调制器件和棱镜集成于一体的激光头,从而突破由赛曼分裂所得频差不宜太大的极限,获得了提高测量速度的途径。以相位共轭波技术补偿由超声东击西波造成的激光波形畸变。通过研究激光干涉测量中测量光路与校准光路的交互干涉技术,新型空气折射率的测量与补偿方法,激光干涉中的非线性误差等,进一步提高了激光干涉的测量精度。从而研制出一种超精密机床高速超精密的在线测量系统。以全新思路解决测量中的问题,使其在测速、测量精度、成本等方面均有较大的突破,为超精密机床的研制奠定基础。并可用于光刻机、坐标测量机及精密机床的精密机床的精密校准和精密位移的测量。
批准号 |
59605018 |
项目名称 |
超精机床高速在线激光测量的交互干涉技术 |
项目类别 |
青年科学基金项目 |
申请代码 |
E0509 |
项目负责人 |
房丰洲 |
负责人职称 |
教授 |
依托单位 |
天津大学 |
研究期限 |
1997-01-01 至 1999-12-31 |
支持经费 |
11(万元) |
干涉原理上来说,白光和激光没有本质区别,就是频率有差别而已 。但目前使用的大部分迈克尔逊干涉仪是 白光式的。
白光干涉仪是用于对各种精密器件表面进行纳米级测量的仪器,它是以白光干涉技术为原理,光源发出的光经过扩束准直后经分光棱镜后分成两束,一束经被测表面反射回来,另外一束光经参考镜反射,两束反射光最终汇聚并发...
一般情况下相位式激光测距仪使用连续发射带调制信号的激光束,为了获得测距高精度还需配置合作目标,而目前推出的手持式激光测距仪是脉冲式激光测距仪中又一新型测距仪,它不仅体积小、重量轻,还采用数字测相脉冲展...
实验室测量金属的线胀系数普遍采用的是光杠杆法,经实验证明光杠杆法存在偶然误差大、测量精度低、占地空间大等问题,通过利用劈尖的等厚干涉法能够很好地解决光杠杆法存在的问题.新方法具有温升范围小、加热功率低、测量精度高、操作简单直观、占地空间小等优点,便于实际教学中教师的讲解、示教和演示,有利于学生综合应用知识,提高综合设计实验的能力.
桥梁振动的激光干涉测量方法——为了实现对新建桥梁的质量检测及现有桥梁健康状况的定期检查,分析和评估桥梁结构振动特性,掌握抗震性能变化情况和趋势,本文提出了激光干涉测量桥梁振动频率的方法,克服了现有测量方法精度低、电磁干扰大、传输距离受限等缺点...
本书系统地介绍了激光测量的基础知识、基本原理、常用方法及典型应用。本书共7章,主要内容包括激光测量技术基础、激光干涉测量技术、激光衍射测量技术、激光准直及多自由度测量技术、激光三角法测量技术、激光视觉三维测量技术、激光测速技术、激光扫描测径技术以及激光测距技术。书中融入了*新的科研成果,实用性强。 本书可作为高等学校测控技术及仪器、光电信息科学与工程等专业本科生的教材,也可作为仪器科学与技术、光学工程、仪器仪表工程等学科和工程领域研究生的教材,还可作为从事精密测试技术与仪器专业技术人员的参考书。
一、数控机床在线检测系统的组成
数控机床在线检测系统分为两种,一种为直接调用基本宏程序,而不用计算机辅助;另一种则要自己开发宏程序库,借助于计算机辅助编程系统,随时生成检测程序,然后传输到数控系统中、
数控机床的在线检测系统由软件和硬件组成。硬件部分通常由以下几部分组成:
(1)机床本体
机床本体是实现加工、检测的基础,其工作部件是实现所需基本运动的部件,它的传动部件的精度直接影响着加工、检测的精度。
(2)数控系统
数控机床一般都采用CNC数控系统,其主要特点是输入存储、数控加工、插补运算以及机床各种控制功能都通过程序来实现。计算机与其他装置之间可通过接口设备联接,当控制对象或功能改变时,只需改变软件和接口。CNC系统一般由中央处理存储器和输入输出接口组成,中央处理器又由存储器、运算器、控制器和总线组成。
(3)伺服系统
伺服系统是数控机床的重要组成部分,用以实现数控机床的进给位置伺服控制和主轴转速(或位置)伺服控制。伺服系统的性能是决定机床加工精度、测量精度、表面质量和生产效率的主要因素。
(4)测量系统
测量系统有接触触发式测头、信号传输系统和数据采集系统组成,是数控机床在线检测系统的关键部分,直接影响着在线检测的精度。其中关键部件为测头,使用测头可在加工过程中进行尺寸测量,根据测量结果自动修改加工程序,改善加工精度,使得数控机床既是加工设备,又兼具测量机的某种功能。2100433B
超精密加工的发展经历了如下三个阶段。
(1)20世纪50年代至80年代为技术开创期。20世纪50年代末,出于航天、国防等尖端技术发展的需要,美国率先发展了超精密加工技术,开发了金刚石刀具超精密切削--单点金刚石切削(Single point diamond tuming,SPDT)技术,又称为"微英寸技术",用于加工激光核聚变反射镜、战术导弹及载人飞船用球面、非球面大型零件等。从1966年起,美国的unionCarbide公司、荷兰Philips公司和美国LawrenceLivemoreLaboratories陆续推出
各自的超精密金刚石车床,但其应用限于少数大公司与研究单位的试验研究,并以国防用途或科学研究用途的产品加工为主。这一时期,金刚石车床主要用于铜、铝等软金属的加工,也可以加工形状较复杂的工件,但只限于轴对称形状的工件例如非球面镜等。
(2)20世纪80年代至90年代为民间工业应用初期。在20世纪80年代,美国政府推动数家民间公司Moore Special Tool和Pneumo Precision公司开始超精密加工设备的商品化,而日本数家公司如Toshiba和Hitachi与欧洲的Cmfield大学等也陆续推出产品,这些设备开始面向一般民间工业光学组件商品的制造。但此时的超精密加工设备依然高贵而稀少,主要以专用机的形式订作。在这一时期,除了加工软质金属的金刚石车床外,可加工硬质金属和硬脆性材料的超精密金刚石磨削也被开发出来。该技术特点是使用高刚性机构,以极小切深对脆性材料进行延性研磨,可使硬质金属和脆性材料获得纳米级表面粗糙度。当然,其加工效率和机构的复杂性无法和金刚石车床相比。20世纪80年代后期,美国通过能源部"激光核聚变项目"和陆、海、空三军"先进制造技术开发计划"对超精密金刚石切削机床的开发研究,投入了巨额资金和大量人力,实现了大型零件的微英寸超精密加工。美国LLNL国家实验室研制出的大型光学金刚石车床(Large optics diamond turning machine,LODTM)成为超精密加工史上的经典之作。这是一台最大加工直径为1.625m的立式车床,定位精度可达28nm,借助在线误差补偿能力,可实现长度超过1m、而直线度误差只有士25nm的加工。
(3)20世纪90年代至今为民间工业应用成熟期。从1990年起,由于汽车、能源、医疗器材、信息、光电和通信等产业的蓬勃发展,超精密加工机的需求急剧增加,在工业界的应用包括非球面光学镜片、Fresnel镜片、超精密模具、磁盘驱动器磁头、磁盘基板加工、半导体晶片切割等。在这一时期,超精密加工设备的相关技术,例如控制器、激光干涉仪、空气轴承精密主轴、空气轴承导轨、油压轴承导轨、摩擦驱动进给轴也逐渐成熟,超精密加工设备变为工业界常见的生产机器设备,许多公司,甚至是小公司也纷纷推出量产型设备。此外,设备精度也逐渐接近纳米级水平,加工行程变得更大,加工应用也逐渐增广,除了金刚石车床和超精密研磨外,超精密五轴铣削和飞切技术也被开发出来,并且可以加工非轴对称非球面的光学镜片。
世界上的超精密加工强国以欧美和日本为先,但两者的研究重点并不一样。欧美出于对能源或空间开发的重视,特别是美国,几十年来不断投入巨额经费,对大型紫外线、x射线探测望远镜的大口径反射镜的加工进行研究。如美国太空署(NASA)推动的太空开发计划,以制作1m以上反射镜为目标,目的是探测x射线等短波(O.1~30nm)。由于X射线能量密度高,必须使反射镜表面粗糙度达到埃级来提高反射率。此类反射镜的材料为质量轻且热传导性良好的碳化硅,但碳化硅硬度很高,须使用超精密研磨加工等方法。日本对超精密加工技术的研究相对美、英来说起步较晚,却是当今世界上超精密加工技术发展最快的国家。日本超精密加工的应用对象大部分是民用产品,包括办公自动化设备、视像设备、精密测量仪器、医疗器械和人造器官等。日本在声、光、图像、办公设备中的小型、超小型电子和光学零件的超精密加工技术方面,具有优势,甚至超过了美国。日本超精密加
工最初从铝、铜轮毂的金刚石切削开始,而后集中于计算机硬盘磁片的大批量生产,随后是用于激光打印机等设备的多面镜的快速金刚石切削,之后是非球面透镜等光学元件的超精密切削。l982年上市的EastnlanKodak数码相机使用的一枚非球面透镜引起了日本产业界的广泛关注,因为1枚非球面透镜至少可替代3枚球面透镜,光学成像系统因而小型化、轻质化,可广泛应用于照相机、录像机、工业电视、机器人视觉、CD、VCD、DvD、投影仪等光电产品。因而,非球面透镜的精密成形加工成为日本光学产业界的研究热点。
尽管随时代的变化,超精密加工技术不断更新,加工精度不断提高,各国之间的研究侧重点有所不同,但促进超精密加工发展的因素在本质上是相同的。这些因素可归结如下。
(1)对产品高质量的追求。为使磁片存储密度更高或镜片光学性能更好,就必须获得粗糙度更低的表面。为使电子元件的功能正常发挥,就要求加工后的表面不能残留加工变质层。按美国微电子技术协会(SIA)提出的技术要求,下一代计算机硬盘的磁头要求表面粗糙度Ra≤0.2nm,磁盘要求表面划痕深度h≤lnm,表面粗糙度Ra≤0.1nmp。1983年TANIGUCHI对各时期的加工精度进行了总结并对其发展趋势进行了预测,以此为基础,BYRNE描绘了20世纪40年代后加工精度的发展。
(2)对产品小型化的追求。伴随着加工精度提高的是工程零部件尺寸的减小。从1989~2001年,从6.2kg降低到1.8kg。电子电路高集成化要求降低硅晶片表面粗糙度、提高电路曝光用镜片的精度、半导体制造设备的运动精度。零部件的小型化意味着表面积与体积的比值不断增加,工件的表面质量及其完整性越来越重要。
(3)对产品高可靠性的追求。对轴承等一边承受载荷一边做相对运动的零件,降低表面粗糙度可改善零件的耐磨损性,提高其工作稳定性、延长使用寿命。高速高精密轴承中使用的Si3N4。陶瓷球的表面粗糙度要求达到数纳米。加工变质层的化学性质活泼,易受腐蚀,所以从提高零件耐腐蚀能力的角度出发,要求加工产生的变质层尽量小。
(4)对产品高性能的追求。机构运动精度的提高,有利于减缓力学性能的波动、降低振动和噪声。对内燃机等要求高密封性的机械,良好的表面粗糙度可减少泄露而降低损失。二战后,航空航天工业要求部分零件在高温环境下工作,因而采用钛合金、陶瓷等难加工材料,为超精密加工提出了新的课题。