中文名 | 磁电机 | 定 义 | 产生磁场的小型交流发电机 |
---|---|---|---|
产 生 | 产生分配给各气缸的火花塞 | 结 构 | 磁电机大多采用旋转磁铁式 |
稀土永磁同步电机是在异步电动机的基础上,将其转子边鼠笼内侧镶入稀土磁钢而成。从牵引电动机单机的额定效率来看,异步电动机是90%-92%,而永磁同步电机则为95%-97%,较异步电动机高4%-6%。主要...
永磁同步电动机转子磁路结构不同,则电动机的运行特性、控制系统等也不同。根据永磁体在转子上的位置的不同,永磁同步电动机主要可分为:表面式和内置式。在表面式永磁同步电动机中,永磁体通常呈瓦片形,并位于转子...
电磁调速电机调速器7芯插头接线:12调速器工作电源,34接励磁线圈,567接测速发电机。 电机滑差离合器5根线判断:用万用表电阻档测量,3个互相通的端子是测速发电机的端子。2个互相通的端子...
(1)永磁电机是指使用了永磁体的电机,这类电机不需要励磁,大致可分为: 永磁直流电机(有换向器),无刷直流电机(直流电机特性,电子换向),永磁 同步电机(交流电机特性)等。 (2)永磁电机与普通电机区别:与普通电机相比,永磁电机具有功率密度高, 特征信号小,结构简单,运行可靠,电机的尺寸和形状灵活多样等性能特点,具 体体现在以下五个方面: 一是功率密度和效率高。 这里所说的功率密度高, 主要是指永磁电机体积小而发 电或输出功率大。 这是因为永磁电机的励磁磁场由永磁体提供, 转子不需要励磁 电流,电机效率提高,与传统电机相比,任意转速点均节约电能,尤其在转速较 低的时候这种优势尤其明显。 现代潜艇大都采用大直径低速 7 叶大侧斜螺旋桨或 泵喷推进器,转速低,推进效率高。而且,潜艇在水下多以低噪声速度机动,使 得永磁电机的这一优势得到更好的体现和发挥。 二是体积小,重量轻。由于使用了高性能的永
本书从永磁电机的基本理论入手,兼顾先进性和实用性,既阐述了永磁材料、永磁电机的共同问题及其最新研究成果,又分类给出各种永磁电机的基本结构、工作原理、设计方法及相关电磁设计程序,特别对永磁电机技术的最新发展及新型特种永磁电机进行了论述。
随着永磁材料性能的不断提高和电机技术的发展,永磁电机在国民经济的各个领域得到了极其广泛应用。
本书从永磁电机的基本理论入手,首先详细介绍了各类永磁材料的特点及选用原则、永磁电机磁路计算、永磁电机的磁场分析方法、永磁电机的齿槽转矩等共性问题;然后分析了各类常见永磁电机的结构特点、工作原理、性能计算和设计方法;最后对特殊结构的新型永磁电机进行了简要介绍。在充分反映永磁电机全貌的基础上,力求体现永磁电机的最新发展和应用成果。
在用永磁电机的时候经常会碰到一些相关的问题,特别是永磁电机时间用久了就会有一些毛病的,当永磁电机有毛病的时候就要有相关的解决方案,以下就是永磁电机4个最常见问题的解决方案办法:
1.永磁电机控制问题的解决方案:永磁电机制成后不需外界能量即可维持其磁场,但也造成从外部调节、控制其磁场极为困难。永磁发电机难以从外部调节其输出电压和功率因数,永磁直流电动机不能再用改变励磁的办法来调节其转速。这些使永磁电机的应用范围受到了限制。但是,随着MOSFET、IGBT等电力电子器件和控制技术的迅猛发展,大多数永磁电机在应用中,可以不必进行磁场控制而只进行电枢控制。设计时需要把稀土永磁材料、电力电子器件和微机控制三项新技术结合起来,使永磁电机在崭新的工况下运行。
2.永磁电机成本问题的解决方案:铁氧体永磁电机,特别是微型永磁直流电动机,由于结构工艺简单、质量减轻,总成本一般比电励磁电机低,因而得到了极为广泛的应用。由于稀土永磁目前价格还比较贵,稀土永磁电机的成本一般比电励磁电机高,这需要用它的高性能和运行费用的节省来补偿。在某些场合,例如计算机磁盘驱动器的音圈电动机,采用钕铁硼永磁后性能提高,体积质量显着减小,总成本反而降低。在设计时既需根据具体使用场合和要求,进行性能、价格的比较后决定取舍,又要进行结构工艺的创新和设计优化以降低成本。
3.永磁电机磁路结构和设计计算问题的解决方案:为了充分发挥各种永磁材料的磁性能,特别是稀土永磁的优异磁性能,制造出性价比高的永磁电机,就不能简单套用传统的永磁电机或电励磁电机的结构和设计计算方法,必须建立新的设计概念,重新分析和改进磁路结构。随着计算机硬件和软件技术的迅猛发展,以及电磁场数值计算、优化设计和仿真技术等现代化设计方法的不断完善,经过电机学术界和工程界的共同努力,现已在永磁电机的设计理论、计算方法、结构工艺和控制技术等方面取得了突破性进展,形成了以电磁场数值计算和等效磁路解析求解相结合的一整套分析研究方法和计算机辅助分析、设计软件,并正在不断完善中。
4.永磁电机不可逆退磁问题的解决方案:如果设计或使用不当,永磁电机在过高(钕铁硼永磁)或过低(铁氧体永磁)温度时,在冲击电流产生的电枢反应作用下,或在剧烈的机械震动时有可能产生不可逆退磁,或叫失磁,使电机性能降低,甚至无法使用。因而,既要研究开发适于电机制造厂使用的检查永磁材料热稳定性的方法和装置,又要分析各种不同结构形式的抗去磁能力,以便在设计和制造时,采用相应措施保证永磁电机不失磁。
由于混合励磁电机在结构上实现了电机气隙磁场的直接调节与控制,突破了传统永 磁电机通过电枢电流矢量控制实现弱磁或增磁的局限,结构上可有多种实现方式。按照转子(动子)的运动方向可分为旋转式混合励磁电机和直线式混合励磁电机; 从电机永磁体放置位置可分为转子永磁型混合励磁电机和定子永磁型混合励磁电机。另外,从电机内永磁体磁势与电励磁磁势相互作用关系来看,一般可归结为三种 类型,即:串联磁路、独立并联磁路和串并联混合磁路。对于串联磁路,永磁体的磁势与电励磁产生的磁势相串联,共同形成气隙磁场;对于独立并联磁路,通常存 在径向磁路和轴向磁路,永磁磁场磁路与电励磁磁场回路相互独立,但在气隙中相互作用,共同形成电机主磁场;对于串并联混合磁路,永磁体磁路与电励磁磁路既 有串联部分,又有并联部分,共同形成电机主磁场。通过控制电励磁绕组电流的大小和方向,实现电机气隙磁场的灵活调节与控制。