CPU架构是CPU厂商给属于同一系列的CPU产品定的一个规范,主要目的是为了区分不同类型CPU的重要标示。目前市面上的CPU分类主要分有两大阵营,一个是intel、AMD为首的复杂指令集CPU,另一个是以IBM、ARM为首的精简指令集CPU。两个不同品牌的CPU,其产品的架构也不相同,例如,Intel、AMD的CPU是X86架构的,而IBM公司的CPU是PowerPC架构,ARM公司是ARM架构。
中文名称 | 处理器架构 | 外文名称 | Processor architecture |
---|---|---|---|
拼音 | chu li qi jia gou | 类型 | CPU产品定的一个规范 |
主要目的 | 区分不同CPU的重要指标 | 阵营数目 | 2 |
Core架构的Merom处理器确实性能强劲。在多项测试中,频率2GHz的T7200能战胜频率2.33GHz的T2700就是最好的证明。但是您同时也注意到了,在移动平台Merom虽然性能强劲,但并没有给您带来太大的惊喜。虽然胜过Yonah,但幅度都不大,而且在一些测试项中,频率稍低的T7200也是输给了T2700的。因此可能在移动平台Core微架构的优势不像桌面平台那样出彩--一颗频率最低的E6300也可以全歼高频率的Pentium D。究其原因就是Yonah本身就比较优秀,而不像NetBurst那样失败,况且Core微架构本身就是在Yonah微架构改进而来,成绩不会形成太大的反差也在情理之中。
Core微架构是Intel的以色列设计团队在Yonah微架构基础之上改进而来的新一代微架构。最显著的变化在于在各个关键部分进行强化。为了提高两个核心的内部数据交换效率采取共享式二级缓存设计,2个核心共享高达4MB的二级缓存。其内核采用较短的14级有效流水线设计,每个核心都内建32KB一级指令缓存与32KB一级数据缓存,2个核心的一级数据缓存之间可以直接传输数据。每个核心内建4组指令解码单元,支持微指令融合与宏指令融合技术,每个时钟周期最多可以解码5条X86指令,并拥有改进的分支预测功能。每个核心内建5个执行单元子系统,执行效率颇高。加入对EM64T与SSE4指令集的支持。由于对EM64T的支持使得其可以拥有更大的内存寻址空间,弥补了Yonah的不足,在新一代内存消耗大户--Vista操作系统普及之后,这个优点可以使得Core微架构拥有更长的生命周期。而且使用了Intel最新的五大提升效能和降低功耗的新技术,包括:具有更好的电源管理功能;支持硬件虚拟化技术和硬件防病毒功能;内建数字温度传感器;提供功率报告和温度报告等。尤其是这些节能技术的采用对于移动平台意义尤为重大。
另外 酷睿支持64位
基于Core架构处理器面对不同消费群族,Core处理器出现了小小的分工,专门面对台式机使用的Conroe,笔记本使用Merom,服务器使用WoodCrest,这三款处理器全部基于Core核心架构。
英特尔处理器包括Core系列桌面型、移动型,以及Xeon处理器,甚至嵌入式处理器,全都将相继进入32纳米制程,逐渐代替了现今的45纳米制程。 随着CES脚步接近,英特尔已透露将在CES上发表多款Core i3、i5桌上型与笔记型处理器,包括笔电的Arrandale与桌电Clarkdale相继采用32纳米制程,强调更小的体积与功耗设计。2009年12月23日英特尔揭露,2010年第一季将推出的嵌入式Xeon处理器也将采用新制程。 09底开始投产的32纳米制程,相较于2008年底的45纳米制程,采用了第二代high-k金属闸极晶体管与浸润式微影技术( immersion lithography),强化对处理器内部用电控管,也比45纳米制程尺寸小30%,简化系统设计。根据英特尔的蓝图,2010第一季将针对嵌入式市场推出32纳米制程,代号为Jasper Forest的嵌入式Xeon处理器,比采用旧制程处理器高出30%到70%的每瓦效能,支持PCI 2.0及I/O虚拟化能力。而企业用的服务器Xeon处理器,随着2010年桌上型处理器Clarkdale的推出,与高阶桌上型市场关系密切的入门级Xeon 3000处理器也会在2009年进入32纳米新制程。
至于2009年采用Nehalem-EP架构的Xeon 5000,虽然一样采用Nehalem架构,但将在2010年上半年开始采用32纳米新制程,推出Westmere-EP处理器。而原来提供6核心的Xeon 7000处理器也会在2010上半年推出最多8核心的Nehalem-EX,在2010下半年同样进入新制程的Westmere-EX。
除了嵌入式系统、服务器、笔电与桌上型相继进入新制程后,目前就只剩下低功耗设计的Atom处理器尚未进入,仍采用45纳米制程。
相较于英特尔在2010年进入新制程,AMD则是要到2011年开始进入32纳米制程,届时将采用新的Bulldozer核心架构设计,包括效能级12至16核心的Interlagos,以及强调能源效益6至8核心的Valencia。
8核心的CPU 现在不可能对应现在的主板所以不可能大张旗鼓的宣传, 最便宜的8核CPU应该是SONY PS3的CELL, 拥有8个核心浮点性能是酷睿双核的N多倍,而现在4核心都没有普及, AMD INTEL是不会着急大量生产他们的8核CPU的,可以说现在的INTEL 4核心只是把2个酷睿内核封装在一个核心里面, 2个核心之间并没用直接通信, AMD倒是出了真4核,只是现在卖的不好还不能成为主流。总结一下5年之后4核心基本可以替换现在的双核成为主流,而8核心甚至16核心CPU将会成为那时候的高端产品!
1、X86
虽然上面说了按处理器架构分的话,目前就术语本身来说主要有四种说法,即IA-32、IA-64、x86-32、x86-64,但是其实它们分属于两类,IA-32、x86-32都属于x86,即英特尔的32位x86架构,x86-64是AMD在其最新的Athlon 64处理器系列中采用的新架构,但这一处理器基础架构还是IA-32(因英特尔的x86架构并未申请专利保护,所以绝大多数处理器厂商为了保持与Intel的主流处理器兼容,都不得不采用这一x86架构),只是在此架构基础之上作了一些扩展,以支持64位程序的应用,进一步提高处理器的运算性能。x86-64相比Intel的64位服务器处理器产品Itanium和 Itanium 2系列处理器产品来说最大的优点就是可以全面兼容以前的32位x86架构的应用程序,以保护用户以前的投资;而Intel的Itanium和Itanium 2系列处理器需要另外通过软件或硬件来实现对以前32位程序的兼容。
正因如此,以后我们看到诸如IA-32、x86-32、x86-64要清楚,其实它们都是一类型的,都属于x86架构的。如Intel的32位服务器Xeon(至强)处理器系列、AMD的全系列,还有VIA的全系列处理器产品都属于x86架构的。
2、IA64
IA-64架构是英特尔为了全面提高以前IA-32位处理器的运算性能,是Intel和Hp共同开发了6年的64位CPU架构,是专为服务器市场开发的一种全新的处理器架构,它放弃了以前的x86架构,认为它严重阻碍了处理器的性能提高。它的最初应用是英特尔的Itanium(安腾)系列服务器处理器,2009年最新的Itanium 2系列处理器也是采用这一架构的。由于它不能很好地解决与以前32位应用程序的兼容,所以应用受到较大的限制,尽管目前Intel采取了各种软、硬方法来弥补这一不足,但随着AMD Operon处理器的全面投入,Intel的IA-64架构的这两款处理器前景不容乐观。
3、RISC
除了以上所介绍的两类IA架构的服务器处理器外,还有一种主流的处理器架构,也可称之为"RISC"(其实它是一种按处理器指令执行方式划分的类型)。采用这一架构的仍是IBM、SUN和HP等。不过近几年由于这一处理器架构标准没有完全统一、处理器的发展和应用非常缓慢,使得原来本占有的绝大多数中高档服务器市场被IA架构瓜分了大部分江山,已是日趋衰落。目前连这几家服务器厂商也开始了自己放弃,转投IA旗下,推出越来越多的IA架构服务器,以保生存。
目前采用这一架构的主要服务器处理器有IBM的Power4、Compaq Alpha213 64、HP PA-8X00、Sun的UltraSPARC III、SGI的MIPS 64 20Kc等。
4、Intel
简介
Intel 常见服务器CPU分类。处理器技术发展真是日新月异,上一代产品还没被大家分清,马上就要被下一代产品替代了。在这里根据个人的一些了解,帮大家做个划分。
一,Xeon(至强)
目前全部Intel IA架构的双路,四路服务器,全部在采用Xeon(至强)CPU,它是基于X86架构的一种服务器专用的CPU 。早期的处理器名称是以数字来表示,并以"86"作为结尾,包括Intel 8086、80186、80286、80386、80486、80586、奔腾系列等等,因此其架构被称为"x86",至今全部Xeon,包括双核、四核的,全部是基于X86架构的产品。
二,Itanium(安腾)
安腾处理器也常被称为IA-64位处理器,是Intel公司面向最顶级的高端应用开发一款纯64位处理器产品,具有64位寻址能力和64位宽的寄存器,它所具备的一系列特性,如EPIC指令等,都是为要求最苛刻的计算及企业级需求而设计的。对于最苛求性能的企业或者需要高性能运算功能支持的应用(包括电子交易安全处理、超大型数据库、电脑辅助机械引擎、尖端科学运算等)而言,Itanium处理器很好的满足了用户的要求。
Intel 服务器处理器列表
系列 | Xeon3000 | Xeon3200 | Xeon3300 | Xeon5000 | Xeon5100 | Xeon5300 | Xeon5200 | Xeon5400 | Xeon7100 | Xeon7300 | Itanium9000 | Itanium9100 |
CPU代号 | ? | ? | ? | Dempsey | Woodcrest | Clovertown | Wolfdale-DP | Harpertown | Tulsa | Tigerton | Montecito | Montvale |
制造工艺 | 65nm | 65nm | 45nm | 65nm | 65nm | 65nm | 45nm | 45nm | 65nm | 65nm | 90nm | 90nm |
指令集 | X86 | X86 | X86 | X86 | X86 | X86 | X86 | X86 | X86 | X86 | EPIC | EPIC |
酷睿微架构 | √ | √ | √ | × | √ | √ | √ | √ | × | √ | × | × |
系统最大处理器数量 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 32 | 32 | 512 | 512 |
主频(GHz) | 1.86/2.13/ 2.33/2.4/ 2.66/3.0 | 2.13/2.4/ 2.66 | 2.5/2.83/ 3.0 | 2.67/3.0/ 3.2/3.73 | 1.6/1.86/ 2.0/2.33/ 2.66/3.0 | 1.6/1.86/ 2.0/2.33/ 2.66/3.0 | 1.86/3.4/ 3.33 | 2.0/2.33/ 2.5/2.66/ 2.8/2.83/ 3.0/3.16/ 3.2 | 2.5/2.6/ 3.0/3.16/ 3.2/3.33/ 3.4/3.5 | 1.6/1.86/ 2.13/2.4/ 2.93 | 1.4/1.42/ 1.6 | 1.42/1.6/ 1.66 |
二级缓存(MB) | 2/4 | 8 | 6/12 | 4 | 4 | 8 | 6 | 12 | 2*1 | 8 | ? | ? |
三级缓存(MB Technorati 标签: 处理器,CPU ) | 54234 | 56456 | 564646 | 768678 | 978978 | 978978 | 87987 | 980898 | 4/8/16 | 8797 | 6/8/12/18/24 | 8/12/18/24 |
前端总线(MHZ) | 1066/ 1333 | 1066 | 1333 | 667/ 1066 | 1066/ 1333 | 1066/ 1333 | 1066/ 1333/ 1600 | 1333/ 1600 | 667/800 | 1066 | 400/533 | 400/533/667 |
功耗(W) | 65 | 95 | 95 | 95/130 | 40/65/80 | 50/80/120 | 65/80 | 80/120/150 | 95/150 | 80/130 | 75/104 | 75/104 |
双核 | √ | ? | ? | √ | √ | ? | √ | ? | √ | ? | √ | √ |
四核 | ? | √ | √ | ? | ? | √ | ? | √ | ? | √ | ? | ? |
超线程 | × | × | × | √ | × | × | × | × | √ | × | √ | √ |
64位运算 | EM64T | EM64T | EM64T | EM64T | EM64T | EM64T | EM64T | EM64T | EM64T | EM64T | 纯64位 | 纯64位 |
三,处理器点评
1,首先看单路处理器,包括Xeon3000、3200、3300系列,其中3000和3200系列的单路处理器全部都采用了酷睿微架构,性能、功耗都非常理想,可以根据应用情况来选择主频,双核或四核。另外的3300系列采用了最新的45nm制造工艺,采用增强型酷睿微架构,性能更强,功耗更低。
2,双路处理器,Xeon5000系列功耗高,性能差,现在已经基本绝迹;5100,5300系列开始使用酷睿微架构,性能,功耗都非常好,可以说是Intel超级成功的一款处理器产品,性能相对于上代处理器有数倍提升,并且功耗有所降低,长时间让竞争对手根本就没有能与之抗衡的产品。而新推出的5200,5400系列更在已经基础上,采用了45nm制造工艺,采用增强型酷睿微架构,性能较5100、5300系列平均提高20%,功耗降低近38%,更为要命的是,价格还很低,简直是现阶段服务器CPU不二的选择。
3,多路至强处理器,在Intel官方的列表上,Xeon7100,7300处理器被标注可以单系统内支持到32处理器,但在国内市场上,能经常见到的只有4路的至强服务器。而Xeon7100处理器,因为当时还没有采用先进的酷睿微架构,所以4颗7100系列的CPU加起来还没有2颗5300系列的双路处理器跑的快,而且价格还很高,所以十分不推荐使用,况且Xeon7100也很快就要在市场上消失了。新的Xeon7300系列是一款非常优秀的多路至强CPU,采用了酷睿微架构,每CPU4核心,如果把4颗CPU组合在一起,搭配上大容量的内存,性能将会非常强劲,足以满足高性能,大数据量的计算需求。
4,安腾处理器,其实安腾处理器的主要竞争对手是IBM、SUN等品牌的高端的小型机CPU,如果您一直在使用高端小型机,比如安装IBM Power CPU的,那么我觉得您很有必要去了解一下安腾,去了解一下这款新一代开放性的高端CPU产品,也许您会发现,原来高稳定,高性能,不一定非得是高成本。除此外,在一些科学运算中,安腾也会给您带来意想不到的效果。
5、CORE
2006年3月上旬,Intel 于美国旧金山举办了2006年度的春季 IDF 大会(Intel Developer Forum)。在这届 IDF 大会上,有一个万众瞩目的焦点:Intel 宣布下一代处理器将采用的 Core 微架构。这也使得2009年的 IDF 大会成为近几年来最激动人心的一次。在2008年秋季的 IDF 大会的开幕主题演讲中,Intel 的执行长官 Paul Otellini 就曾经指出,未来处理器的技术发展重点将是"性能功耗比"(Performance per Watt)。而这届 IDF 大会的主题更加明确:功耗最优化平台(Power-Optimized Platforms)--与 Core 微架构紧密相关。根据 Intel 的说法,采用新的 Core 微架构的处理器将在整数性能和商业计算方面得到极大的飞跃,肯定将超过竞争对手 AMD 的产品。更加美妙的是,拥有这样强悍性能的 Core 微架构在功耗方面将比前任大幅下降,从而完美的体现了这届 IDF 大会的主题。
Core 微架构是由 Intel 位于以色列海法的研发团队负责设计的。该以色列团队早在2003年就因为设计出兼具高性能与低功耗的 Banias 处理器而闻名天下,Core 微架构也是他们在 Yonah 微架构之后的最新杰作。Core 微架构很早就出现在 Intel 的计划之中了,早在2003年夏天 Intel 就曾经隐约提到过,原定是 Centrino 平台的第三代 Napa 平台后期和第四代 Santa Rosa 平台所采用的处理器。没想到由于 NetBurst 微架构的失败,Core 微架构被 Intel 改弦易辙,推上前台,被赋予了取代 NetBurst 微架构、一统桌面、移动与服务器平台的历史使命。
作为 Intel 的新旗舰,Core 微架构拥有双核心、64bit指令集、4发射的超标量体系结构和乱序执行机制等技术,使用65nm制造工艺生产,支持36bit的物理寻址和48bit的虚拟内存寻址,支持 Intel 所有的扩展指令集。Core 微架构的每个内核拥有 32KB 的一级指令缓存、32KB 的双端口一级数据缓存,然后2个内核共同拥有 4MB 的共享式二级缓存。Core 微架构在2009年内发布的最高频率将是 Conroe XE 的3.33GHz。每种产品拥有自己的最高 TDP:Merom 最高35W,Conroe 最高65W,Woodcrest 最高80W。此外,针对不同客户的要求也可以提供低功耗的版本。例如,低电压版本的 Woodcrest 将会定位于刀片系统,通过降低频率等方法使 TDP 低达40W。
Intel 声称 Core 微架构拥有14级"有效"流水线。与 Banias 同出于一个设计团队,Core 微架构仅有14级的整数流水线,并不让人意外。但是,究竟什么是14级"有效"流水线?
在过去的几年里,有关流水线级数的几个概念经常被混淆。我们首先澄清一下,流水线的"条数"与"级数"是完全不同的概念。能够完整执行各种指令的一系列功能单元组成"一条"流水线。而关于流水线级数,可以这样简单理解:在传统意义上,一条流水线所包含的功能单元一般可以被划分为多个部分,它可以被划分成几个部分,就称这条流水线是"几级"的。然后让我们来了解一下"有效流水线"的定义,这也是在过去容易造成误解之处。简而言之,所谓的有效流水线,就是指发生分支预测错误时,所需要重新执行的流水线级数。以采用 NetBurst 微架构的处理器来说,Willamette、Northwood与Prescott核心的有效流水线级数分别是20、20和31,而原始的P6 微架构的处理器则是10级。
不过,对于现代的普遍采用乱序执行方式的X86处理器来说,有效流水线级数并不能代表真正意义上的流水线级数。NetBurst 微架构的处理器仅仅是 Trace Cache 的 Trace 建立过程,就有起码10级;P6 微架构的完整流水线级数应该是12至15(10级有效流水线加上指令执行完毕后的 Retire 动作,与可能出现的 Reorder Buffer延迟)。随着乱序执行引擎的工作方式越来越复杂,X86处理器流水线级数的概念也日益模糊。换言之,Core 微架构真正意义上的流水线级数并不会只有14。
Core 微架构的14级有效流水线与 Prescott 核心的31级有效流水线的对比,也只有参考意义。那些仅仅根据这个数字的对比就断言 Core 微架构只能达到很低的频率的说法是不具有足够的说服力的。Conroe XE 3.33GHz 处理器的存在已经让很多相信这个说法的用户大吃一惊。而实际上,已经有玩家声称,Conroe 处理器可以在风冷的情况下达到4GHz以上的频率。Core 微架构的频率到底能够到达什么样的高度,让我们拭目以待。
core与conroe的区别
我们把Core音译为酷睿,它是Intel下一代处理器产品将统一采用的微架构,而Conroe只是对基于Core微架构的Intel下一代桌面平台级产品的代号。除Conroe处理器之外,Core微架构还包括代号为Merom的移动平台处理器和代号为Woodcrest的服务器平台处理器。采用Core的处理器将被统一命名。由于上一代采用Yonah微架构的处理器产品被命名为Core Duo,因此为了便于与前代Intel双核处理器区分,Intel下一代桌面处理器Conroe以及下一代笔记本处理器Merom都将被统一叫做Core 2 Duo。另外,Intel的顶级桌面处理器被命名为Core 2 Extreme,以区别于主流处理器产品。
此次发布的Conroe/Merom共计10款,其中代号以E和X开头的5款面向台式机,以T开头的4款面向笔记本。
英特尔初期发布Core微架构处理器包含E6000桌面系列和T7000、T5000移动系列,E6000系列处理器外频为266MHz,前端总线频率为1066MHz,拥有2MB(E6300、E6320、E6400)或4MB(E6600、E6550、E6700) 二级缓存,面向高性能市场;稍后推出的E4000系列外频相对低一些,为200MHz,前端总线800MHz,定位低于E6000系列,发布时间将延后至2007年第一季度。除普通版Conroe之外,Intel还将发布Conroe XE处理器取代现有的旗舰产品Pentium XE--即X6800。
虽然桌面平台的Conroe的前端总线为1066MHz,但这次的主角移动版处理器Merom前端总线均为667MHz(Merom处理器原本是属于下一代移动平台Santa Rosa上的处理器产品,现在不得不在Santa Rosa平台推出之前先把Merom处理器推向市场,并可以顺利地植入目前的Napa平台上面。为了在Intel 945芯片组上面运行,其前端总线为了适合于Intel 945芯片组,而仍然保留667MHz的前端总线设计。而今后出现的Santa Rosa平台上的Merom处理器其前端总线就改为800MHz。这种情景与当年推出400MHz的Dothan为适应Intel 855芯片组的做法十分相似)。二级缓存则加大为4MB(低端的T5000系列仍为2MB),意味着缓存中可以寄存更多等待处理数据,减少处理器与内存以及外围设备间数据传输的瓶颈,提高指令的命中率,大大提高执行效能。
随着Napa平台上Yonah处理器被替换成Merom处理器,这也意味着英特尔移动处理器开始进入64位元双核技术时代,Yonah作为双核移动处理器的首战英雄将开始退居其后
分析VLIW架构处理器特点,设计周期级精确的指令集模拟器。模拟器被按照功能划分为若干具有规范接口的模块。通过修改、替换模块可快速构建新模型,具有较好的可扩展性。采用高效的二进制指令译码算法和JIT-CCS技术提高性能。实践表明,本模拟器在处理器设计过程中起到重要作用。
针对单核处理器平台上数控系统提升性能和扩展功能方面存在的问题,研究了双核处理器平台上数控系统软件设计的一些理论问题。首先基于RTCore实时操作系统研究了双核平台上数控系统的线程模型设计方案,探讨了线程在核心上的分配方法;然后采用RM算法判定多个周期性实时任务的可调度性,并根据判定结果和负载均衡情况进行线程模型设计;最后研究了中断管理相关问题,提出了根据中断的重要性不同而分配到不同核心上的方法。提出的问题和方法对于设计基于双核和多核处理器平台的数控系统软件具有一定参考意义和实用价值。
打桩机是一种AMD微处理器架构,来自推土机架构的改进。
新的“打桩机”皓龙处理器在频率上将有所提升,著名的“走鹃”超级计算机发布的文档中透露了这一信息: 这份“走鹃”的说明文档中透露,基于“打桩机”架构的“阿布扎比”皓龙处理器将在2012年第二季度推出,有200MHz的性能提升。“阿布扎比”采用了和之前一样的TDP封装,85W、115W和140W。
那么可以来推测一下,皓龙6282SE主频为2.6GHz、TDP为140W,6284SE主频为2.7GHz,那么未来的16核心皓龙6300SE主频可能能够达到2.9GHz主频,TDP 140W;标准版的16核心皓龙6300主频为2.6GHz,TDP 115W。以此类推,95W封装的8核心皓龙4300主频能够达到3.6GHz,65W封装的6核心皓龙4300HE主频在3.1GHz左右。
看上去频率提升的并不多,一直以来AMD皓龙都是低主频、多核心的路线,如果继续增加核心,AMD不得不采用新的接口,但从上面的文档能看出,新的“打桩机”皓龙还是采用和“推土机”相同的接口,故而推测“打桩机”在核心数量上不会有太大变化。
根据Fudzilla的报道,AMD正在加紧的准备代号为Vishera的下一代打桩机处理器,作为推土机的继任者,它依然采用32nm工艺制造,架构方面相对于推土机进行了一定的修改,但封装接口依然是AM3 。据悉首批打桩机将会和当初的推土机一样拥有三款型号,分别是FX-8350、FX-6300以及FX-4320。 FX-8350将会作为FX-8150的继任者,依然是八颗物理核心,不锁倍频,默认频率4GHz,动态加速频率4.2GHz,二级缓存8MB,TDP依然是125W。
FX-6300拥有六核物理核心,默认频率3.5GHz,动态加速频率4.1GHz,二级缓存6MB,三级缓存8MB,TDP95W。
FX-4320拥有四颗物理核心,默认频率4GHz,动态加速频率4.2GHz,TDP也是95W。
FX-8300拥有八颗物理核心,默认频率3.3GHz,动态加速频率4.2GHz,TDP相比同为Vishera的FX8350降低了30W,仅为95W。
从TDP方面来看,AMD的代工厂GlobalFoundries的32nm制造工艺依然是大雷,漏电率较高等问题还没有得到有效的解决,在32nm工艺推出一年多以后还出现这种情况真的是不应该。
挖掘机就是用于开挖土方工程的工程机械。
挖掘机被广泛应用于土方工程的开挖。根据其规模可分为:大型挖掘机、中型挖掘机和小型挖掘机。根据其传动方式可分为:轮式挖掘机和履带式挖掘机。
服务器的选型主要从以下两个方面考虑:
(1)服务器处理器架构的选型。
(2)服务器性能的选型。