系统在单位冲激函数激励下引起的零状态响应被称之为该系统的"冲激响应"。
中文名称 | 冲激响应 | 适用领域范围 | 信号与系统 |
---|---|---|---|
提出者 | 奥本海默 | 应用学科 | 物理 |
表达式 | h(t)=ds(t)/d(t) | 决定因素 | 系统本身的特性 |
01 应急响应等级按照突发事件发生的紧急程度、发展态势和可能造成的危害程度分为一级、二级、三级和四级,分别用红色、橙色、黄色和蓝色标示,Ⅰ级(特别严重)、Ⅱ级(严重)、Ⅲ级(较重)和Ⅳ级(一般)...
所谓频率响应是指音响设备重放时的频率范围以及声波的幅度随频率的变化关系。一般检测此项指标以1000hz的频率幅度为参考,并用对数以分贝(db)为单位表示频率的幅度。音响系统的总体频率响应理论上要求为2...
响应文件里技术规格响应/偏离表、商务条款响应/偏离表怎么填?
技术规格相应一般是指工期,质量要求,再一个就是施工方案里必须包含的内容。工期,质量要求在投标人须知表格中都会有,只要按照工期,质量要求填写即可。 至于施工组织设计,那么就要按照评标的要求去填写,要不然...
响应函 XXXXXX采购中心: 我方全面研究了“ ”项目(采购编号: ) 询价通知书,决定参加贵单位组织的本项目询价。我方授权 (姓名)代 表我方 (供应商的名称)全权处理本项目 询价的有关事宜。 一、我方自愿按照询价通知书规定的各项要求向采购人提供所需货物,其中产 品 为进口产品;(供应商根据实际情况填写) 二、一旦我方成交,我方将严格履行政府采购合同规定的责任和义务; 三、我方同意本询价通知书依据《四川省政府采购当事人诚信管理办法》(川 财采【 2015】33号文件)对我方可能存在的失信行为进行的惩戒; 四、我方为本项目提交的询价通知书正本 份,副本 份; 五、我方本次采购的询价有效期为 60日历天,完成本项目的时间为 ; 六、我方愿意提供贵中心可能另外要求的,与询价有关的文件资料,并保证我 方已提供和将要提供的文件资料是真实、准确的; 七、在评审过程中,评审委员会认为询价通知书有关事
冲激响应即是传递函数的傅里叶逆变换,为
2100433B
一维有限冲激响应数字滤波器 又称一维非递归型数字滤波器,处理单变量信号序列。其输出y(n)可以直接由输入序列x(n)和单位冲激响应序列h(n)褶积而得
y(n)=n(k)x(n-k) (1)
式中N为数字滤波器单位冲激响应长度。 单位冲激响应h(n)的z变换H(z)为有限冲激响应数字滤波器的转移函数
H(z)=n(n)z (2)
一维有限冲激响应数字滤波器实现为非递归型结构(图1)。 有限冲激响应数字滤波器的设计,主要是使转移函数在单位圆上的值
H()=n(n)z (3)
逼近一个理想幅度响应Hd()。设计一维有限冲激响应数字滤波器常用的方法有:窗函数法、频率采样法和等波纹机助优化设计法。
窗函数法 设计有限冲激响应数字滤波器最直接的方法就是把无限冲激响应序列截短,得到有限长度的冲激响应。设所要求的理想频率响应为Hd(),其单位冲激响应Hd(n)为Hd()的傅里叶反变换。Hd(n)是非因果无限长序列。为使得所设计的数字滤波器的有限冲激响应h(n)逼近hd(n),采用对hd(n)加窗的方法,即令
h(n)=hd(n)w(n) (4)
式中w(n)为有限长度窗序列。由褶积定理可求得所设计的滤波器的频率响应为
(5)
式中W()为窗序列w(n)的频谱函数。选取适当的窗序列可以得到对理想频率响应Hd()的较佳逼近。常用的窗序列有矩形窗:
(6)
汉宁窗:
(7)
海明窗:
(8)
布莱克曼窗:
(9)
凯塞窗:
(10)
式中α为控制主瓣宽度和旁瓣电平的设计参数,
,
I(·)表示零阶贝塞尔函数。图2为上述五种窗函数的曲线。附表列出上述五种窗函数的性能参数。
除上述所列的五种窗函数外,尚有其他类型的窗函数。一般窗序列函数均可表示为闭函数形式,便于设计应用。 频率采样法 频域逼近的一种设计方法。由于有限长度冲激响应序列可以由同样长度的频域抽样值唯一地确定,因此,对理想频率响应可以在频域取等间隔抽样插入逼近。利用过渡带抽样值设为待定变量的自由度,应用线性规划优化方法可以求得对理想频率响应的逼近。
等波纹机助优化设计法 利用等波纹逼近方法,使逼近函数在整个频率域内与理想频率响应的误差为最小,然后用雷麦兹法求解。这种方法虽然计算较复杂,但主要是利用计算机辅助设计,设计效率较高、效果较好。线性相位有限冲激响应数字滤波器的缺点是时延较大,如果不要求线性相位特性,可以设法将转移函数在单位圆外的零点反演到单位圆内,设计成具有较小时延的最小相位有限冲激响应数字滤波器。
二维有限冲激响应数字滤波器 通称二维非递归型数字滤波器,用以处理二维数字信号序列。其输出可以由输入的二维信号序列x(m,n)与单位冲激响应序列h(m,n)进行二维离散褶积求得
(11)
式中N1和N2分别为数字滤波器单位冲激响应的维长度。单位冲激响应h(m,n)的二维z变换H(z1,z2)为二维非递归型数字滤波器的转移函数
(12)
二维非递归型数字滤波器与一维非递归型数字滤波器有相似之处。设计方法主要有窗函数法、变换法和等波纹机助设计法等。窗函数法的二维窗序列wⅡ(m,n)可以由一维窗序列wI(k)导出
(13)
窗函数法设计简便,且不限于设计零相位数字滤波器。变换法是用变量代替法将一维零相位非递归型数字滤波器变换为二维非递归型数字滤波器。
这种设计方法比较复杂,且只限于设计零相位滤波器。等波纹机助设计法可以设计具有最佳特性的非递归型数字滤波器。
IIR滤波器的特征是其输出y(n)由当前的和过去的输入信号x(n)及过去的输出信号共同决定。
无限冲激响应数字滤波器只能实现为递归型结构,故也称为递归型数字滤波器。同一转移函数的无限冲激响应数字滤波器可以实现为不同的网络结构,如直接型、并联型、级联型等。高阶数字滤波器通常实现为以一阶和二阶基本节结构为基础的级联型或并联型结构,以降低系数灵敏度。
无限冲激响应数字滤波器的设计方法主要有两种:一种是采用映射方法将具有相应特性的模拟滤波器转换为数字滤波器;另一种是用计算机辅助优化设计实现具有特定幅度、相位特性要求的数字滤波器。无限冲激响应数字滤波器可以用单片数字信号处理器(DSP)实时实现,也可以用只读存储器和加法器组成的查表法结构实时实现。对于同样幅频特性的要求,采用无限冲激响应数字滤波器实现,所需的阶次要远小于有限冲激响应数字滤波器。这类滤波器在通信设备中,有广泛的应用。
对单位冲激的输入信号的响应为无限长序列的数字滤波器。按所处理信号的类型,可分为一维、二维或多维无限冲激响应数字滤波器。
无限冲激响应数字滤波器转移函数的极点应位于z平面的单位圆内,以保证滤波器的稳定性。这类数字滤波器实现为递归型结构,故又称一维递归型数字滤波器。图1为递归型数字滤波器采取一种直接型结构的信号流图。为便于调整并降低系数灵敏度,高阶滤波器通常实现为以一阶和二阶直接型为基础的级联型或并联型。 无限冲激响应数字滤波器的设计方法主要有两类。一类是根据模拟滤波器设计理论,由模拟滤波器特性或结构导出数字滤波器转移函数或结构,较典型的有冲激响应不变法和双线性变换法。另一类是直接在z域中应用计算机辅助设计法。
冲激响应不变法 使所设计数字滤波器的单位冲激响应,等于具有给定频响特性的模拟滤波器的冲激响应的抽样值。这一方法的特点是数字信号频率和模拟信号频率之间的变换呈线性关系。但这种方法限于设计具有限带特性的数字滤波器。
双线性变换法 利用变量z与复频率变量s的双线性变换关系,将s平面的左半平面及其实频率轴映射到z平面上的单位圆内及其圆周上。这一方法的特点是s平面上的值与z平面上的值呈单值的对应关系,因此这种方法适于设计具有各种频响特性的数字滤波器,不致发生频谱混叠现象。但是,z平面的频率和s平面频率之间具有非线性关系,致使数字滤波器的频响特性与所要求的频响特性发生频率畸变,即卷绕现象。但是,一般要求滤波器通带特性为平坦的频响特性,因此,双线性变换法是一种有效的、应用较为普遍的设计方法。
上述设计方法是以设计原型归一化低通滤波器为基础,经频率变换导出所要求性能的数字滤波器。频率变换可以在s域进行,也可以在z域进行。
在z域直接用计算机辅助设计方法 应用优化方法来调整数字滤波器转移函数的系数或零极点位置,使得所设计的数字滤波器频响特性与所要求特性的误差为最小。在设计过程中需要采取措施,使得每次叠带所得到的转移函数的极点位于单位圆内,以保证滤波器的稳定性。
由于运算的有限字长效应,递归型结构有可能出现极限环振荡现象。这是由于运算字长的舍入而引入的非线性作用,使数字滤波器在零输入时有振荡输出。因此,人们正研究设计低灵敏度的、稳定的无限冲激响应数字滤波器,并已取得一定成果。
二维无限冲激响应数字滤波器 通称二维递归型数字滤波器,用以处理二维数字信号序列。二维递归型数字滤波器有因果的四分之一平面型和半平面型两种。图2为因果的四分之一平面型低通滤波器幅谱特性。图3为半平面型扇形特性的数字滤波器幅谱特性。 二维递归型数字滤波器的设计方法有频域法和空间域法两种。频域法设计主要是寻求一个满足频域给定指标要求的稳定的无限冲激响应数字滤波器转移函数。这种设计有两类方法:一是谱变换法;另一是计算机辅助优化方法。空间域法设计主要是寻求一个转移函数,使其冲激响应在有限区域内逼近给定的二维冲激响应。二维递归型数字滤波器设计的主要问题是稳定性问题。二维数字滤波器的设计理论和方法尚不完善,特别是稳定的、高阶二维递归型数字滤波器设计还有待进一步研究。