淬火-分配热处理,简称“Q-P热处理”。将钢在奥氏体化后先淬火至Ms~Mf间一定的温度,形成一定数量的马氏体和尚未转变的奥氏体,再在Ms~Mf间或在Ms以上的一定温度短时停留,使碳由马氏体分配扩散至奥氏体,使奥氏体趋于稳定,增加残余奥氏体量,以提高钢的塑性和韧性的热处理。
频率有区别,高频250-300kHz,中频是2500-8000Hz,你说的低频应该是工频吧,因为只有工频淬火,工频就是50Hz,频率越高的话,加热时间越短,也就意味着效率比较高,但淬硬层就薄。高频一般...
真空热处理是真空技术与热处理技术相结合的新型热处理技术,真空热处理所处的真空环境指的是低于一个大气压的气氛环境,包括低真空、中等真空、高真空和超高真空,真空热处理实际也属于气氛控制热处理。真空热处理是...
热处理是指金属材料在固态下,通过加热、保温和冷却的手段,改变材料表面或内部的化学成分与组织,获得所需性能的一种金属热加工工艺。
研究了可用做超高强度锚杆材料的低碳Si-Mn系TRIP钢的Q-P-T热处理的力学性能,结果表明:经Q-P-T得到的显微组织主要是具有高位错密度的细条状马氏体和10%~15%的残留奥氏体,马氏体上析出了细小共格复杂碳化物。在延伸率≥17.3%的条件下,最佳综合性能σb×σs为1 874 520 MPa,其中抗拉强度σb=1 640 MPa。
针对原热处理淬火冷却系统在使用过程中出现的问题,逐个分析击破,形成一套全新的热处理淬火冷却循环系统.
零件如果局部硬度要求较高,可用感应加热等方式进行局部淬火热处理,这样的零件通常要在图纸上标出局部淬火热处理的位置和局部硬度值。零件的硬度检测要在指定区域内进行。硬度检测仪器可采用洛氏硬度计,测试HRC硬度值,如热处理硬化层较浅,可采用表面洛氏硬度计,测试HRN硬度值。
化学热处理
化学热处理是使工件表面渗入一种或几种化学元素的原子,从而改变工件表面的化学成分、组织和性能。经淬火和低温回火后,工件表面具有高的硬度、耐磨性和接触疲劳强度,而工件的芯部又具有高的强韧性。
根据以上所说的内容,在热处理过程中对温度的检测和记录非常重要,温度控制得不好对产品的影响十分大。所以,温度的检测十分重要,在整个过程的温度变化趋势也显得十分重要,导致在热处理的过程中必须对温度的变化进行记录,可以方便以后进行数据分析,也可以查看到底是哪段时间温度没有达到要求。这样对以后的热处理进行改进起到非常大的作用。
1、清理好操作场地,检查电源、测量仪表和各种开关是否正常,水源是否通畅。2、操作人员应穿戴好劳保防护用品,否则会有危险。3、开启控制电源万能转换开关,根据设备技术要求分级段升、降温,延长设备寿命和设备完好。4、要注意热处理炉的炉温和网带调速,能掌握对不同材料所需的温度标准,确保工件硬度及表面平直度和氧化层,并认真做好安全工作。5、要注意回火炉的炉温和网带调速,开启排风,使工件经回火后达到质量要求。6、在工作中应坚守岗位。7、要配置必要的消防器具,并熟识使用及保养方法。8、停机时,要检查各控制开关均处于关闭状态后,关闭万能转换开关。
钢的淬火是将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界冷却速度的冷速快冷到Ms以下(或Ms附近等温)进行马氏体(或贝氏体)转变的热处理工艺。通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火。
淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或贝氏体组织,然后配合以不同温度的回火,以大幅提高钢的刚性、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求。也可以通过淬火满足某些特种钢材的铁磁性、耐蚀性等特殊的物理、化学性能。
将金属工件加热到某一适当温度并保持一段时间,随即浸入淬冷介质中快速冷却的金属热处理工艺。常用的淬冷介质有盐水、水、矿物油、空气等。淬火可以提高金属工件的硬度及耐磨性因而广泛用于各种工、模、量具及要求表面耐磨的零件(如齿轮、轧辊、渗碳零件等)。通过淬火与不同温度的回火配合,可以大幅度提高金属的强度、韧性下降及疲劳强度,并可获得这些性能之间的配合(综合机械性能)以满足不同的使用要求。另外淬火还可使一些特殊性能的钢获得一定的物理化学性能,如淬火使永磁钢增强其铁磁性、不锈钢提高其耐蚀性等。淬火工艺主要用于钢件。常用的钢在加热到临界温度以上时,原有在室温下的组织将全部或大部转变为奥氏体。随后将钢浸入水或油中快速冷却,奥氏体即转变为马氏体。与钢中其他组织相比,马氏体硬度最高。淬火时的快速冷却会使工件内部产生内应力,当其大到一定程度时工件便会发生扭曲变形甚至开裂。为此必须选择合适的冷却方法。根据冷却方法,淬火工艺分为单液淬火、双介质淬火、马氏体分级淬火和贝氏体等温淬火4类。
包括加热、保温、冷却3个阶段。下面以钢的淬火为例,介绍上述三个阶段工艺参数选择的原则。
淬火淬火加热温度
以钢的相变临界点为依据,加热淬火时要形成细小、均匀奥氏体晶粒,淬火后获得细小马氏体组织。碳素钢的淬火加热温度范围如图《淬火加热温度》所示,由本图示出的淬火温度选择原则也适用于大多数合金钢,尤其低合金钢。亚共析钢加热温度为Ac3温度以上30~50℃。从图上看,高温下钢的状态处在单相奥氏体(A)区内,故称为完全淬火。如亚共析钢加热温度高于Ac1、低于Ac3温度,则高温下部分先共析铁素体未完全转变成奥氏体,即为不完全(或亚临界)淬火。过共析钢淬火温度为Ac1温度以上30~50℃,这温度范围处于奥氏体与渗碳体(A C)双相区。因而过共析钢的正常的淬火仍属不完全淬火,淬火后得到马氏体基体上分布渗碳体的组织。这-组织状态具有高硬度和高耐磨性。对于过共析钢,若加热温度过高,先共析渗碳体溶解过多,甚至完全溶解,则奥氏体晶粒将发生长大,奥氏体碳含量也增加。淬火后,粗大马氏体组织使钢件淬火态微区内应力增加,微裂纹增多,零件的变形和开裂倾向增加;由于奥氏体碳浓度高,马氏体点下降,残留奥氏体量增加,使工件的硬度和耐磨性降低。常用钢种淬火的温度参见上图册中的表,表为常用钢种淬火的加热温度。
实际生产中,加热温度的选择要根据具体情况加以调整。如亚共析钢中碳含量为下限,当装炉量较多,欲增加零件淬硬层深度等时可选用温度上限;若工件形状复杂,变形要求严格等要采用温度下限。
淬火淬火保温
淬火保温时间 由设备加热方式、零件尺寸、钢的成分、装炉量和设备功率等多种因素确定。对整体淬火而言,保温的目的是使工件内部温度均匀趋于一致。对各类淬火,其保温时间最终取决于在要求淬火的区域获得良好的淬火加热组织。加热与保温是影响淬火质量的重要环节,奥氏体化获得的组织状态直接影响淬火后的性能。一般钢件奥氏体晶粒控制在5~8级。
淬火淬火冷却
要使钢中高温相——奥氏体在冷却过程中转变成低温亚稳相——马氏体,冷却速度必须大于钢的临界冷却速度。工件在冷却过程中,表面与心部的冷却速度有-定差异,如果这种差异足够大,则可能造成大于临界冷却速度部分转变成马氏体,而小于临界冷却速度的心部不能转变成马氏体的情况。为保证整个截面上都转变为马氏体需要选用冷却能力足够强的淬火介质,以保证工件心部有足够高的冷却速度。但是冷却速度大,工件内部由于热胀冷缩不均匀造成内应力,可能使工件变形或开裂。因而要考虑上述两种矛盾因素,合理选择淬火介质和冷却方式。
冷却阶段不仅零件获得合理的组织,达到所需要的性能,而且要保持零件的尺寸和形状精度,是淬火工艺过程的关键环节。
表面硬化处理简介
表面硬化法是指通过适当的方法使零件的表层硬化而零件的心部仍然具有强韧性的处理。通过这种处理,可以改善零件的耐磨性以及耐疲劳性,而由于零件的心部仍然具有良好的韧性和强度,因此对冲击载荷有良好的抵抗作用。常用的表面硬化处理方法主要有渗碳、氮化、硬质阳极氧化、镀铬、表面淬火以及渗金属等。
分类
渗碳
钢的渗碳就是含碳量较低的钢制零件在渗碳介质中加热或者保温,使碳原子渗入表面,获得一定的表面含碳量,在淬火之后,含碳量高的表层硬度很高,而含碳量低的心部硬度低仍具有良好的韧性。目的是使零件获得高的表面硬度、耐磨性以及高的接触疲劳强度和弯曲疲劳强度。主要用于承受磨损、交变接触应力或者弯曲应力和冲击载荷的零件,如轴、齿轮、凸轮轴等,这些零件要求表面有很高的硬度而心部要有足够的强度和韧性。
氮化
氮化是指把合金钢(一般含有Al、Cr、Mo)在无水氨气(NH3)流中在500℃—570℃左右长时间加热,使钢的表面形成一层硬度很高又耐腐蚀的氮化物(主要为Fe2N、Fe3N、Fe4N)。一般有气体渗氮、液体渗氮和辉光离子渗氮。
硬质阳极氧化
铝的阳极氧化是以铝或铝合金作阳极,以铅板作阴极在电解液中电解,使其表面生成氧化膜层。经过阳极氧化,铝表面能生成厚度为几个至几百微米的氧化膜。这层氧化膜的表面是多孔蜂窝状的,比起铝合金的天然氧化膜,其耐蚀性、耐磨性和装饰性都有明显的改善和提高。采用不同的电解液和工艺条件,就能得到不同性质的阳极氧化膜。
镀铬
铬的硬度可以达到800~10OOHV,是最硬的金属。它有很强的钝化性能,在大气中很快钝化,因而铬层在大气中很稳定,能长期保持其光泽,在碱、硝酸、硫化物、碳酸盐以及有机酸等腐蚀介质中非常稳定,但可溶于盐酸等氢卤酸和热的浓硫酸中。
长期以来,在我国热处理行业中,一直存在着“重热轻冷”(即重视工件的加热技术,而轻视淬火冷却技术)的严重倾向,且淬火冷却的生产实践又滞后于冷却转变的理论研究,致使淬火冷却技术落后于热处理其它技术领域的发展;与先进国家相比,差距更大,是热处理行业中的一个薄弱环节。 冷却是热处理淬火剂的重要组成部分。淬火冷却要求高、技术难度大,一直是热处理生产中关注的重点。当前,绝大多数工件的淬火都是在水性淬火介质或油中进行的。 众所周知,如果钢件淬火冷却速度过慢,就不能获得要求的淬火硬度和淬硬层深度;而冷却速度过快,又可能引起淬裂和过深的淬硬层。同时,淬火冷却速度过快或冷却速度不足,都可能引起工件的超差变形。不仅如此,冷却过程中,工件的形状越复杂,不同部位温度差就越大,要得到不淬裂和没有超差变形就越难。
淬火冷却技术的第一步是选择适合的淬火介质。一般说,合适的标准首先是在单件淬火条件下能满足热处理要求。仅仅作单件淬火时,淬火冷却的不均匀性主要表现在同一个工件上。通常采取选择合适的淬火介质,加上适当的淬火操作方式,特别是手工操作方式,来解决单件淬火的均匀性问题。现代的热处理生产则以大量、连续,以及长期不断生产为特点。相应地,淬火冷却的不均匀性也就增加到四个方面。 第一,同一工件不同部位在淬火冷却上的差异,这是单件淬火就存在的问题。 第二,同批淬火的工件,因放置的部位不同,冷却环境不尽相同所引起的不均匀性。 第三,不同批次淬火的工件,因淬火介质的温度和相对流速变化等原因引起的不均匀性。 第四,长期生产中,因介质受污染,加上淬火介质本身的变化,所引起的不同时期的淬火效果上的差异。 因此,现代热处理大生产的淬火冷却技术,要求在单件淬火冷却技术的基础上,通过采用高质量的冷却介质、与介质配套的设备,以及相关的用法技术,来消除或减小上述四方面的性能差异,以保证获得更高的和始终稳定的热处理质量。把研究开发不同特性的淬火介质产品、根据情况选择合适淬火介质的品种,以及通过装备和使用技术来改善上述四种均匀性要求结合在一起,就构成了热处理冷却技术的工作内容,或者说基本任务。研究开发能高质量、适应不同要求的多种淬火介质,是冷却技术的首要内容。 所以,淬火介质在热处理淬火工艺中起着举足轻重的作用,是冷却技术的龙头或中心。 尽管我们和世界先进水平有一定的差距,但可喜的是我国在淬火介质的研究和应用方面,做了大量的工作,已经取得了长足进步。已有多种无机聚合物淬火剂、有机聚合物淬火剂研制成功,并得到广泛应用。 洛阳迅智工贸有限公司跟踪国外新型无机聚合物淬火剂的研究和应用成果,自主研发,创民族品牌,研制生产出立足于国内、符合于国情,冷却速度介于水和油之间,并可根据需要调整冷却速度的新型无机聚合物淬火剂。
想要了解更多有关热处理淬火剂的相关信息,可以点击: