中文名 | 超低功耗柔性聚合物阻变存储器件及机理研究 | 项目负责人 | 蔡一茂 |
---|---|---|---|
项目类别 | 面上项目 | 依托单位 | 北京大学 |
柔性聚合物阻变存储器是一种极具潜力的新型柔性非易失存储器,然而目前其仍面临着存储功耗高的问题,限制了其在超低功耗和微型化的柔性电子系统中的应用。为了解决器件存储功耗高的问题,本项目利用CAFM技术更直观、更深入地证实了parylene-C RRAM的金属导电细丝阻变机理,为后续器件的设计提供了理论指导。针对柔性电子系统对器件微型化、集成化的需求,本项目研制了基于parylene-C的柔性多功能温度传感-存储器件和基于parylene-C的柔性多功能光输入-存储模块。针对parylene-C RRAM器件存储功耗高的问题,本项目研制了两种超低功耗parylene-C RRAM器件的新结构,即双层parylene-C结构和石墨烯插入层结构,大大地降低了器件的存储功耗。其中,基于双层parylene-C的超低功耗柔性RRAM器件的存储功耗低至约10fJ/bit,远小于美国国防部先进技术委员会(DARPA)对未来新型存储器的功耗要求1pJ/bit,为超低功耗柔性RRAM器件的应用奠定了基础。相关成果申请5项专利,在包括AEM,IEEE-EDL,IEDM以及Nanoscale等著名期刊和国际会议上发表学术论文26篇学术论文和一本专著章节。 2100433B
随着可穿戴设备等移动智能终端的爆发式增长,超低功耗和微型化的柔性电子系统也得到迅猛发展。这些柔性电子系统都离不开信息的存储和读取,因此柔性存储器特别是柔性阻变存储器(Resistive Random Access Memory -RRAM)最近成为研究的热点。但是以有机材料RRAM为代表的柔性RRAM存在着功耗和性能的瓶颈。. 本项目针对这些重要瓶颈,拟研制超低功耗柔性parylene聚合物RRAM,通过阻变材料的堆栈结构、杂质功能团引入、有机无机复合技术、聚合物未反应终端修复、界面插层等聚合物材料结构、制备及其改性技术的创新研究,并结合RRAM器件新结构设计和电极材料的设计优化,降低柔性聚合物RRAM器件的操作电流和电压,从而降低功耗,并提高其速度、可靠性和均匀性等综合性能。推动低成本、超低功耗及高性能的柔性RRAM存储技术的发展,为柔性电子的研究和应用打下基础。
Maxim公司推出具有温度和电压监测功能的安全电池备份控制器和监控电路DS3655。这是业内仅有的一款集成了电池备份控制器、系统电源监测器、CPU监控电路、历时计数器、温度传感器和篡改检测比较器输入的超低功耗单芯片器件。
综述了聚合物水泥中的聚合物及其膜的结构组成,探讨了聚合物水泥的组成和形成过程及聚合物改性水泥复合材料的改性机理,分析了聚合物水泥的物理力学性能和工程应用,指出了聚合物水泥的发展趋势和可能的应用途径。
SOI功率集成的关键技术是实现高压、低功耗以及高、低压之间隔离。为此,进行以下创新研究:提出高压、超低功耗、器件尺寸缩小且易于集成的槽型SOI MOSFET并研究其机理。该器件具有嵌入漂移区的介质槽和纵向延伸至埋氧层的槽栅。①介质槽引起多维度耗尽,使电场重构并增强RESURF(reduced surface field)效应,从而提高耐压和漂移区浓度;②介质槽使漂移区沿纵向折叠,缩小器件面积,降低比导通电阻和功耗,并增加开关速度;③延伸的栅槽扩展纵向导电区,进一步降低导通电阻;④将提出的器件用于高压集成电路,延伸的栅槽同时作为高/低压单元间的介质隔离槽,简化隔离工艺、降低成本。新型SOI MOSFET的耐压较相同尺寸的常规SOI LDMOS可提高1倍,且比导通电阻降20%- 30%;或相同耐压,器件横向尺寸降为50%。项目拟研制新型SOI MOSFET,并将其用于设计的高压驱动集成电路。
兼具高击穿电压(Breakdown Voltage,BV)和低比导通电阻(Specific On-Resistance,Ron,sp)是功率MOSFET器件的热点科学问题,然而,存在困扰业界的“硅极限” 关系-Ron,sp正比例于BV的 2.5次方。项目从模型、新结构以及工艺实现等方面展开研究,成果突破“硅极限”,并有利于芯片和系统小型化,促进了SOI高压器件的发展及其在功率集成电路中的应用。本项目实现预期目标,达到技术指标。取得的创新成果如下: (1)提出了高压、低阻、易集成的槽型SOI功率MOSFET系列新结构并深入研究其机理。机理如下:介质槽引起多维度耗尽并增强RESURF效应,提高器件击穿电压和漂移区浓度;介质槽沿纵向折叠漂移区,降低器件面积和比导通电阻;纵向延伸至介质层的槽栅扩展纵向有效导电区域,同时可作为高、低压单元间的介质隔离槽,简化隔离工艺。新器件击穿电压较相同尺寸的常规SOI LDMOS提高50%以上,且比导通电阻降低20%以上。 (2)建立了槽型SOI MOSFET普适耐压模型和变k介质槽RESURF增强SOI MOSFET耐压模型,获得槽型SOI MOSFET设计的普适方法,为横向槽型SOI MOSFET器件设计的提供理论指导。 (3)设计驱动集成电路,将提出的双槽(Dual-trench,DT,含槽栅和漂移区的介质槽)DT SOI MOSFET器件应用其中;制备出DT SOI MOSFET器件及功率驱动集成芯片。制备的芯片样品击穿电压BV=196V(无介质槽的器件仅62V),高于预期指标150V,输出电流达500mA,全部达到了预期目标。 成果获2014年教育部自然科学二等奖,发表论文29篇(SCI检索共18篇,全部EI检索),含领域顶级期刊IEEE Electron Device Lett.(EDL)和IEEE Trans. on Electron Device(TED)论文6篇,在功率半导体领域顶级会议ISPSD发表3篇;获授权美国、中国发明专利 10项,已受理5项发明专利。 2100433B
通过在物体表面贴上一层柔性覆层来抑制湍流达到减阻效果是一种简单而有潜力的湍流减阻被动控制方法。本项目利用直接数值模拟的手段,对柔性覆层湍流边界层特性及减阻机理进行研究。(1)柔性覆层湍流边界层的直接数值模拟方法研究:采用基于动态曲线坐标方法处理任意变形的流体边界,结合辅助计算法和比例缩放法给出湍流边界层的入口条件,柔性覆层计算模型包括各向同性和各向异性模型;(2)柔性覆层湍流边界层的统计特性,近壁相干结构动力学过程及减阻机理研究:采用流场可视化和条件平均的方法,研究柔性覆层对近壁湍流相干结构及湍流自维持机制的影响,通过雷诺应力输运方程中各项的平衡关系来研究湍流减阻的机理;(3)柔性覆层关键材料参数研究:结合单谐波分析,根据数值模拟的结果分析关键材料参数对减阻效果的影响,并在均匀材料的研究基础上设计非均匀材料结构以求改善减阻效果,为实验研究及实际应用提供参考。