中文名 | 不平衡电流 | 外文名 | unbalancedcurrent |
---|---|---|---|
学 科 | 电力工程 | 释 义 | 输出数值或相角不相等的电流 |
范 围 | 电力系统 | 领 域 | 能源 |
并联电容器的外部过电压和过电流继电保护对电容器内部元件损坏引起的过电压和过电流是起不到监测和保护作用的。因为装在母线上的电压互感器对电容器组内部元件或单元过电压是无法检测到的,内部故障造成的电流变化也不会使过流保护启动。电容器组内部过电压通常采用不平衡保护,通过采用不同的电容器组接线和继电保护方式,可测量到电压或电流的不平衡量,并用作保护。不平衡保护的主要目的是当邻近故障电容器l单元少的完好电容器上的过电压过大时发出警报,或断开整个电容器组。当电容器组内部发生故障时,三相电流不再平衡,通过电流互感器将获得3倍的零序电流。这种接线对系统电压本身的不平衡敏感,灵敏度有可能降低。谐波电流将流过互感器,需要滤波器 。
关于中性点接地的并联电容器组内部过电压保护,检测不平衡电流是一种经济而有效的方法,但它本身存在难以克服的缺陷。利用微机继电保护的优势,对采样的电压、电流序列进行重复利用。在不平衡电流检测的基础上,借助对相电流的变化进行判断,就很容易判别出三相平衡故障、两组对称故障及不平衡故障以及对故障相的识别 。
并联电容器组通常是根据所需要的额定电压和额定容量将许多电容器元件(或简称元件)按照一定的方式进行串、并联组成的。电容器组内部电容器元件因故障退出运行后,母线电压将在剩余的电容器元件或单元(由一个或多个电容器元件组装于单个外壳中并有引出端子的组装体)上重新分配而造成内部过电压。因此,电容器组继电保护装置需要检测出电容器组内部过电压的大小,从而决定是发出告警信号还是将整个电容器组退出运行。对于中性点接地的星形电容器组的内部过电压保护,不平衡电流保护是一种常用的方法。
不平衡电流,即是零序电流和负序电流。 在通常的低压回路中,由于三相负荷引起的负序电流较小,往往把零序电流作为不平衡电流看待。不平稳电流过大,一是电动机效率降低,线圈发热,严重时不能正常工作。在实际工作...
不平衡电流是同步发电机定子三相绕组输出数值或相角不相等的电流。零序电流在三相四线电路中,三相电流的相量和等于零,即Ia+Ib+Ic=0。如果在三相四线中接入一个电流互感器,这时感应电流为零。当电路中发...
由于系统的影响,发电机的三相电流不平衡是经常性的,只要没有其它故障,可以正常进行。如果系统的电压是基本平衡的,功率表也是正常的,就是发电机的三相电流突然不平衡严重(超过1/3),就应该全面检查一次运行...
上面分析了不平衡电流保护具有自身难以克服的缺陷,保护装置在某些情况下拒动或误动。微机继电保护装置通常是将电容器组过电压保护、过电流保护和不平衡保护结合在一起的。利用微机保护的特点,在不平衡保护的判断中增加对相电流的变化进行判断。这种改进方法可以克服不平衡保护的缺陷,相电流利用过流保护的三相电流互感器获得,而无须额外增加电流互感器。
简要分析了大型串联电容补偿装置不平衡电流的监测方法:计算电容量不平衡度法和模拟不平衡电流测试法。主要探讨了停电状态下不平衡电流的模拟测试方法,认为,该法是对电容器组进行修后试验的一种有效且无法替代的手段,并通过应用实例说明了这种方法的实用性。
介绍不平衡电流及其识别方法,分析暂态不平衡电流对变压器差动保护的影响,提出采用"3选2"制动模式及改进差动保护等措施,并通过实例验证了该措施能够有效降低保护误动的发生。
不平衡电流的危害
电网中三相间的不平衡电流是普遍存在的,在城市民用电网及农用电网中由于大量单相负荷的存在,三相间的电流不平衡现象尤为严重。对于三相不平衡电流,除
了尽量合理地分配负荷之外几乎没有什么行之有效的解决办法。正因为找不到解决问题的有效办法,因此反而不被人们所重视,也很少有人进行研究。
电网中的不平衡电流会增加线路及变压器的铜损,增加变压器的铁损,降低变压器的出力甚至会影响变压器的安全运行,会造成三相电压不平衡因而降低供电质量
,甚至会影响电能表的精度而造成计量损失。
理论研究证明:在输出同样功率的情况下,三相电流平衡时变压器及线路的铜损最小,也就是说:三相不平衡现象增加了变压器及线路的铜损。
不平衡电流对系统铜损的影响
设某系统的三相线路及变压器绕组的总电阻为R。如果三相电流平衡,IA=100A,IB=100A,IC=100A,则总铜损=1002R+1002R+1002R=30000R。
如果三相电流不平衡,IA=50A,IB=100A,IC=150A,则总铜损=502R+1002R+1502R=35000R,比平衡状态的铜损增加了17%。
在更为严重的状态下,如果IA=0A,IB=150A,IC=150A,则总铜损=1502R+1502R=45000R,比平衡状态的铜损增加了50%。
在最严重的状态下,如果IA=0A,IB=0A,IC=300A,则总铜损=3002R=90000R,比平衡状态的铜损增加了3倍。
对变压器的影响
现有的10/0.4KV的低压配电变压器多为Yyn0接法三相三柱铁心的变压器。这种类型的变压器,当二次侧负荷不平衡且有零线电流时,零线电流即为零序电流,而在
一次侧由于无中点引出线因此零序电流无法流通,故零序电流不能安匝平衡,对铁心而言,有一个激磁零序电流,它受零序激磁阻抗控制,根据磁路的设计,这一零序
激磁阻抗较大,零序电流使相电压的对称受到影响,中性点会偏移。由计算得知,当零线电流为额定电流的25%时,中性点移位约为额定电压的7%。国家标准GB50052-
95第6.08条规定: “当选用Yyn0结线组别的三相变压器,其由单相不平衡负荷引起的电流不得超过低压绕组额定电流的25%,且其中一相的电流在满载时不得超过额定电
流值。”由于上述规定,限制了Yyn0结线配电变压器接用单相负荷的容量,也影响了变压器设备能力的充分利用。
并且,对三相三柱的磁路而言,零序磁通不能在磁路内成回路,必须在油箱壁及紧固件内形成回路,而油箱壁及紧固件内的磁通会产生较大的涡流损耗,因而使变
压器的铁损增加。当零序电流过大导致零序磁通过大时,由于中性点漂移过大会引起某些相电压过高而导致铁心磁饱和,使铁损急剧增加,加上紧固件过热等因素,可
能会发生任何一相电流均未过载而变压器却因局部过热而损坏的事故。
由于Yyn0结线组的配电变压器与的零序激磁阻抗较大,因此零线电流会造成较大的电压变化,形成比较严重的三相电压不平衡现象,不但影响单相用户,对三相用户的影响更大 。
暂态a) 由于短路电流的非周期分量主要为电流互感器的励磁电流,使其铁芯饱和,误差增大而引起不平衡电流。
b)变压器空载合闸的励磁涌流,仅在变压器一侧有电流。2100433B
(1)三相负荷不平衡将增加变压器的损耗:
变压器的损耗包括空载损耗和负荷损耗。正常情况下变压器运行电压基本不变,即空载损耗是一个恒量。而负荷损耗则随变压器运行负荷的变化而变化,且与负荷电流的平方成正比。当三相负荷不平衡运行时,变压器的负荷损耗可看成三只单相变压器的负荷损耗之和。
从数学定理中我们知道:假设a、b、c 3个数都大于或等于零,那么a+b+c≥33√abc 。
当a=b=c时,代数和a+b+c取得最小值:a+b+c=33√abc 。
因此我们可以假设变压器的三相损耗分别为:Qa=Ia2 R、Qb= Ib2 R 、Qc =Ic2 R,式中Ia、Ib、Ic分别为变压器二次负荷相电流,R为变压器的相电阻。则变压器的损耗表达式如下:
Qa+Qb+Qc≥33√〔(Ia2 R)(Ib2 R)(Ic2 R)〕
由此可知,变压器的在负荷不变的情况下,当Ia=Ib=Ic时,即三相负荷达到平衡时,变压器的损耗最小。
则变压器损耗:
当变压器三相平衡运行时,即Ia=Ib=Ic=I时,Qa+Qb+Qc=3I2R;
当变压器运行在最大不平衡时,即Ia=3I,Ib=Ic=0时,Qa=(3I)2R=9I2R=3(3I2R);
即最大不平衡时的变损是平衡时的3倍。
(2)三相负荷不平衡可能造成烧毁变压器的严重后果:
上述不平衡时重负荷相电流过大(增为3倍),超载过多,可能造成绕组和变压器油的过热。绕组过热,绝缘老化加快;变压器油过热,引起油质劣化,迅速降低变压器的绝缘性能,减少变压器寿命(温度每升高8℃,使用年限将减少一半),甚至烧毁绕组。
(3)三相负荷不平衡运行会造成变压器零序电流过大,局部金属件温升增高:
在三相负荷不平衡运行下的变压器,必然会产生零序电流,而变压器内部零序电流的存在,会在铁芯中产生零序磁通,这些零序磁通就会在变压器的油箱壁或其他金属构件中构成回路。但配电变压器设计时不考虑这些金属构件为导磁部件,则由此引起的磁滞和涡流损耗使这些部件发热,致使变压器局部金属件温度异常升高,严重时将导致变压器运行事故。
(1)增加高压线路损耗:
低压侧三相负荷平衡时,6~10k V高压侧也平衡,设高压线路每相的电流为I,其功率损耗为: ΔP1 = 3I2R
低压电网三相负荷不平衡将反映到高压侧,在最大不平衡时,高压对应相为1.5I,另外两相都为0.75 I,功率损耗为:
ΔP2 = 2(0.75I)2R+(1.5I)2R = 3.375I2R =1.125(3I2R);
即高压线路上电能损耗增加12.5%。
(2)增加高压线路跳闸次数、降低开关设备使用寿命:
我们知道高压线路过流故障占相当比例,其原因是电流过大。低压电网三相负荷不平衡可能引起高压某相电流过大,从而引起高压线路过流跳闸停电,引发大面积停电事故,同时变电站的开关设备频繁跳闸将降低使用寿命。
(1)三相负荷不平衡将增加线路损耗:
三相四线制供电线路,把负荷平均分配到三相上,设每相的电流为I,中性线电流为零,其功率损耗为: ΔP1 = 3I2R
在最大不平衡时,即某相为3I,另外两相为零,中性线电流也为3I,功率损耗为:
ΔP2 = 2(3I)2R = 18I2R = 6(3I2R);
即最大不平衡时的电能损耗是平衡时的6倍,换句话说,若最大不平衡时每月损失1200 kWh,则平衡时只损失200 kWh,由此可知调整三相负荷的降损潜力。
(2)三相负荷不平衡可能造成烧断线路、烧毁开关设备的严重后果:
上述不平衡时重负荷相电流过大(增为3倍),超载过多。由于发热量Q=0.24I2Rt,电流增为3倍,则发热量增为9倍,可能造成该相导线温度直线上升,以致烧断。且由于中性线导线截面一般应是相线截面的50%,但在选择时,有的往往偏小,加上接头质量不好,使导线电阻增大。中性线烧断的几率更高。
同理在配电屏上,造成开关重负荷相烧坏、接触器重负荷相烧坏,因而整机损坏等严重后果。
供电企业直管到户,低压电网损耗大,将降低供电企业的经济效益,甚至造成供电企业亏损经营。农电工承包台区线损,线损高农电工奖金被扣发,甚至连工资也得不到,必然影响农电工情绪,轻则工作消极,重则为了得到钱违法犯罪。
变压器烧毁、线路烧断、开关设备烧坏,一方面增大供电企业的供电成本,另一方面停电检修、购货更换造成长时间停电,少供电量,既降低供电企业的经济效益,又影响供电企业的声誉。
三相负荷不平衡,一相或两相畸重,必将增大线路中的电压降,降低电能质量,影响用户的电器使用。
变压器烧毁、线路烧断、开关设备烧坏,影响用户供电,轻则带来不便,重则造成较大的经济损失,如停电造成养殖的动植物死亡,或不能按合同供货被惩罚等。中性线烧断还可能造成用户大量低压电器被烧毁的事故。