伴热带技术指标
1、电缆结构:内层导电热塑料、外层为双层阻燃聚烯烃并带有屏蔽层
2、温度范围:
最高暴露温度85℃,最高表面温度85℃
最高维持温度65℃,最低使用温度-60℃
3、施工温度: 最低:-5℃
4、热稳定性:由10℃至99℃间来回循环300次后, 电缆发热量维持在90%以上。
5、弯曲半径:20℃室温时为25.4mm,-30℃低温时为35.0mm
在正确维护下,电伴热系统使用寿命为8年或更长。
我国工艺管线和罐体容器的伴热大多采用传统的蒸气或热水伴热。电伴热是用电热的能量来补充被伴热体在工艺流程中所散失的热量,从而维持流动介质最合理的工艺温度,它是一种高新技术产品。电伴热是沿管线长度方向或罐体容积大面积上的均匀放热,它不同于在一个点或小面积上热负荷高度集中的电伴热;电伴热温度梯度小,热稳定时间较长,适合长期使用,其所需的热量(电功率)大大低于电加热。电伴热具有热效率高,节约能源,设计简单,施工安装方便,无污染,使用寿命长,能实现遥控和自动控制等优点,是取代蒸汽或热水伴热的技术发展方向,是国家重点推广的节能项目。
电伴热与蒸汽(热水)相比,具有诸多优势如下:
(1)电伴热装置简单、发热均匀、控温准确,能进行远控,遥控,实现自动化管理。
(2)热具有防爆、全天候工作性能,可靠性高,使用寿命长。
(3)电伴热无泄漏,有利于环境保护。
(4)节省钢材:它不需要蒸气伴热所需的一来一去二趟伴热管路。
(5)节省保温材料。
(6)节约水资源,不象锅炉每天需要大量的水。
(7)电伴热还能解决蒸气和热水伴热难以解决的问题。
(8)电伴热设计工作量小,施工方便简单,维护工作量小。
(9)效率高,能大大降低能耗。
有的项目,无论是一次性投资,还是年运行费用,电伴热带比蒸汽伴热带都要节省;有的项目电伴热带的一次性投资可能会略高于蒸汽热水伴热,但以年运行费用论,通常电伴热运行1-2年节省的费用就能收回投资。
伴热带特性
自控温电热带、自限温电热带具有自动控温和自动限温的特性体现在:
它是由导电聚合物(塑料)和两根平行金属导线及绝缘护层构成。其特点是导电聚合物具有很高的正温度数"PTC"特性,可以任意截短或在一定范围内接长使用,并允许多次交叉重叠而无高温热点及烧毁之虑.因此上述带状恒温加热器是其适应被加热体系,而传统的恒功率加热器是其影响被加热体系.故此种自控温电热带实际优点是:
* 电热带相应被伴热体系具有自动调节输出功率,因此不会因自身发热而烧毁,却因实际需要热量进行补偿,故为新一代节能型恒温加热器。
* 低温状态、快速起动,温度均匀,因每一局部皆可因其被伴热处的温度变化自动调节。
* 安装简便、维护简单、全天服务,自动化水平高,运行及维护费用低。
* 安全可靠、用途广、不污染环境、寿命长。
(1)功率-温度特性 该特性是模拟管道伴热保温条件下测定的。随体系温度的增加,功率大致呈线性下降,其斜率为体系温度每改变一度时电热带功率的减少量,它反映了功率随温度自动调节的能力。应当指出,电热带的功率是稳定态参数,影响的因素较多,不能简单地用电流乘以电压加以计算。
(2)最高维持温度
用电热带伴热某一体系,若单位时间内电热带向体系传递的热量等于体系向环境传递的热量,体系的温度便得以维持不变。
(3)最高承受温度 电热带能承受低于一定温度的外部热源的影响,高于此温度后,功率会缓慢下降而且是积累性的。因此,使用中不要超过电热带的最高承受温度。本参数是选择电热带的主要参数之一。
(4)最高表面温度
在隔热良好的密闭容器内放放足够长度的电热带,在额定电压下达到的最高温度为电热带的最高表面温度。这一参数对有易燃物料或有易爆气体的场合是重要的。
(5)最大使用长度
电热带可以任意剪短使用,但只能在一定长度范围内任意接长;换言之,不得超过最大使用长度。最大使用长度与额定电压、功率规格及使用时最低环境温度有关。如果要求使用的长度超过电热带的最大使用长度,应当另接电源或使用特殊规格的特长型伴热电缆。
(也称温控电伴热带电缆)的工作原理
温控电伴热带电缆由导电高分子复合材料(塑料)和两根平行金属导线及绝缘护套构成的扁形带状电缆。其特性是导电高分子复合材料具有正温度系数"PTC"特性,且相互并联,能随被加热体系的温度变化自动调节输出功率,自动限制加热的温度。"PTC"特性即正温度系数效应,是指材料电阻率随着温度升高而增大,并在一定温度区间电阻率急剧增大的特性。温控伴热电缆可以任意截短或在一定范围内接长使用,并允许多次交叉重叠而无高温热点及烧毁之虑。因此温控伴热电缆优点是:
温控电伴热带电缆相应被伴热体系具有自动调节输出功率,因此不会因自身发热而烧毁,却因实际需要热量进行补偿,因此为新一代节能型恒温加热器。
低温状态快速启动,温度均匀,每一局部皆可因其被伴热处的温度变化自动调节。
安装简便,维护简单,自动化水平高,运行及维护费用低。
安全可靠,用途广,不污染环境,寿命长。
1.PTC效应及PTC材料
PTC效应即正温度系数效应,是特指材料电阻率随着温度升高而增大,并在一定温度区间电阻率急剧增大的特性。具有PTC效应的材料称为PTC材料,本电缆的高分子PTC材料是半晶 高聚物与炭黑的共混物。
2.PTC工作原理
温控电伴热带电缆的电热元件,是在两根平行金属母线之间均匀的挤包一层PTC材料制成的芯带。PTC材料经熔融挤出、冷却定型之后,分散其中的炭微粒形成无数纤细的导电炭网络。当它们跨接在两根平行母线上时,就构成芯带的PTC并联回路。电缆一端的两根母线与电源接通时,电流从一根母线横向流过PTC材料层到达另一根母线形成并联回路。PTC层就是连续并联在母线之间的电阻发热体,将电能转化成热能,对操作系统进行伴热保温。当芯带温度升到相应的高阻区时,电阻大到几乎阻断电流的程度,芯带的温度将达到高限不再升高(即自动限温)。与此同时,芯带通过护套向温度较低的被加热体系传热,达到稳态时单位时间传递的热量等于电缆的电功率。电缆的输出功率主要受控于传热过程以及被加热体系的温度。
电伴热产品可广泛用于石油、化工、电力、医药、机械、食品、船舶等行业的管道、泵体、阀门、槽池和罐体容积的伴热保温、防冻和防凝,是输液管道、储液介质罐体维持工艺温度 最先进、最有效的方法。电伴热不但适用于蒸汽伴热的各种场所,而且能解决蒸汽伴热难以解决的问题,如:长输管道的伴热,无规则外型的设备(如泵)伴热;无蒸汽热源或边远地区管道和设备的伴热;塑料与非金属管道的伴热,等等。
主要应用场所举例如下:
(1)、石油管线防凝、解蜡和伴热保温。
(2)、油田井口采油树的伴热防凝,提高产量。
(3)、化工管道、罐体、仪表管线的伴热保温。
(4)、海上石油平台输油管线伴热和水管防冻。
(5)、油轮和船舶管线、容器的伴热保温。
(6)、发电厂重油管道的伴热保温和水管的防冻。
(7)、间歇输送介质管道的升温和伴热保温。
(8)、需要严格控制介质温度管线的伴热保温。
温控伴热电缆由导电高分子复合材料(塑料)和两根平行金属导线及绝缘护套构成的扁形带状电缆。其特性是导电高分子复合材料具有正温度系数"PTC"特性,且相互并联,能随被加热体系的温度变化自动。
安装简便,维护简单,自动化水平高,运行及维护费用低。
伴热带主要分为低温型和中温型,配合恒功率高温电热带以及铠装MI电缆统称为电伴热。如何正确地为一个项目工程选择一款合适、省点、节能、高效并且使用寿命长的电伴热带呢?
首先要从选型方面,就拿管道来距离。某个管道需要防冻,5度以上不结冰, 那么只要是在常温环境下,都可以选用低温自限温电热带,若是低温条件非常低,可以适当地调整安装比例,以达到合适的热补偿热平衡;再如某个管道需要保温,本身管道介质有温度,需要使用电伴热带来给管道提供热损失维持热量,那么就可以选用中温和高温的恒功率伴热带。以上两点都比较好理解。比较麻烦的是加热方面,众所周知,电伴热带顾名思义,以伴热为主加热为辅的一种可发热电缆。加热功能稍弱,长期出于满负荷运行会降低其使用寿命。这就需要使用MI加热电缆,一种铠装电缆,最高耐温可达1000度,每米功率根据理论热量损失来进行定制,这种电伴热带甚至可以放入水中使用。
选择一个正确的型号,对日后安全使用、节能减排、高效作业都有一定的帮助,使用寿命也将控制在理论范围。
根据高分子PTC材料的组成不同,自控温伴热带分为低温型和高温型两类。
市场上常见的有以聚烯烃为基材的65℃温度等级的加热电缆和以含氟材料为基材的110℃和150℃加热电缆。此处的温度等级定义为加热电缆所能有效应用的最高环境温度(MAXIMUMPIPE MAINTENANCE TEMPERATURE)。也可以理解为电缆能够长期稳定应用并产生有效加热功率输出的最高环境温度,超过规定温度等级,一方面由于电阻增高,电缆本身的输出功率很小,实际加热效率很低。另一方面,长期的超温使用,使电缆性能如:PTC特性,加热功率等劣化或衰减,会降低电缆的使用寿命和运行可靠性。但短期间断地暴露于超过温度等极的温度环境,也是可以的。因此,除上述温度等级外,自控温加热电线,还有另一个温度等级。如对于65℃温度等级的电缆,该温度等级为85℃,对于110℃温度等级的电缆,为130℃,而对于150℃电缆,则为230℃。然而此时的电缆有效输出功率已接近于零。
由于相关文献资料太少,许多人对于自控温加热电缆的温度等级有着错误的理解,认为它是指加热电缆的最高表面温度,因此,出现了45.65,85和105℃温度等级聚烯烃加热的说法。而实际上,由于电缆的输出功率与环境温度有关,而电缆的表面温度与测试时的环境温度,保温状态都有密切联系。因此,用表面温度来定义自控温加热电缆的温度等级是不科学,也是不准确的。我们需要记住的是,对于以聚烯烃为基材的加热电缆其最高连续使用温度应不超过65℃。
自控温伴热带的输出功率是指在环境温度为摄氏10度条件下,单位长度电缆的输出功率。按加热功率输出分类,自控温伴热带有高中低三种类型。一般而言,加热功率小于35瓦/米的为低功率加热电缆;加热功率大于35瓦/米而小于65瓦/米的为中功率加热电缆;而加热大于65瓦/米的为高功率加热电缆。
通用型伴热带:是指由铜导线,高分子PTC材料和单层阻燃护套所组成的加热电缆。主要应用于一般场合下的管网的加热或伴热。防爆增强型加热电缆:是在通用型电缆的外层再复合一层金属网,这种结构电缆可有效消除静电和抵御外来机械碰境。主要应用于具有防爆要求的场所。
防腐防爆增强型:这种结构的电缆是在防爆增强型加热电缆的金属网外层,再复合上一层含氟材料。具有这种结构的加热电缆可有效地防止和抵御静电,机械碰撞和各种腐蚀性介质。主要应用于环境恶劣或有易燃易爆物品的场所。
普通型伴热带:这是一种二芯结构的加热电缆。由两根平行金属导线外敷高分子PTC材料和阻燃护套材料或金属网和氟材料护套所构成。由于受导体直径和沿长电压降的影响,这种电缆的连接使用长度一般不超过200米。
超长型伴热带:这是一种特殊结构的五芯或六芯加热电缆。除由高分子PTC材料包敷的两根平行导线外,同方向还另布3-4根带绝缘护套的金属导线,外加金属铠装。用于传送电能。这种特殊的结构,使电缆的最长连续使用长度可超过1100米,因而可应用于输油输气道的伴热和油田井下伴热。
安全型伴热带:这是一种三芯加热电缆。在电缆中,在阻燃护套内沿长度方向另布一根监视电线。监视电线可随时把沿线的输出功率异常变化,过电流情况,局部损伤等信息及时传送到中央控制室,便于及时了解沿线加热情况,保证电缆的安全可靠运行。
低电压型:是指适用电压范围在12-36V之间的伴热带。这类电缆一般加热功率较低,连续使用长度不超过10米。使用时需严格遵守电压要求,否则,可导致电缆着火等意外事故。应用范围主要为民用保健品及车船用加热坐椅等。
中电压型:是指适用电压在100-660V之间的加热电缆。我们一般所说的自控温伴热带均指这一类电缆。在实际应用中,120和250V电缆可互换,但120V加热电缆的最大连续使用长度通常为240V的一半。这类电缆的连续应用长度通常不超过200米。高压型伴热带:是指适用电压在380-650V之间的加热电缆。它们主要为前面所提及的5-6芯加热电缆。连续应用长度通常大于500米。
品名 | 型 号 | 标称功率( W/m .10 ℃ ) | 最高维持温度 ( ℃ ) | 最高承受温度( ℃ ) | 最高表面温度( ℃ ) | 最低安装温度( ℃ ) |
低温通用型电热带 | DXW | 10-35 | ≤70 | 105 | ≤80 | -40 |
低温宽型电热带 | DXKW | 10-35 | ≤70 | 105 | ≤80 | -40 |
中温通用型电热带 | ZXW | 15-45 | ≤105 | 135 | ≤110 | -40 |
中温宽型电热带 | ZXKW | 15-45 | ≤105 | 135 | ≤110 | -40 |
高温通用型电热带 | GXW | 25-70 | ≤135 | 155 | ≤140 | -40 |
高温宽型电热带 | GXKW | 25-70 | ≤135 | 155 | ≤140 | -40 |
采暖用自控温电热带 | CNXW | 10-25 | ≤70 | 105 | ≤80 | -40 |
热损失Qt 输出功率Q 伴热比 伴热带长度 伴热带类型 操作电压 Heat Loss Htg Cable output Trace Ratio Total Htg Cab Length Heating Cable Type Optg Volt W/M W/M M W/M Vac 1 100 100 0.00 0.00 1 100 25 220 2 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 220 3 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 220 4 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 220 5 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 220 6 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 220 7 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 22
1、并联式恒功率电伴热带
2、串联式恒功率电伴热带
一、确定电伴热带敷设长度 在没有图纸资料的情况下,要如何确定电伴热带的长度呢?我们可以按如下的方法判断电伴热带的长度:
1.关闭电伴热管线电源,打开温控器上盖。
2.用8mm套筒脱掉电源线,用万用表测量L1,L2间的电阻值,记为R。
3.计算电伴热带长度,220V按L=1613/R,380V按L=4813/R。例如测得JFB-30/2J电伴热带(220V)L1,L2间电阻值为100欧姆,则1613/100=16.13,即电伴热带长度为16米。
二、确定温控器和尾端的位置
温控器和尾端的位置也是非常重要的,这是进行检修测试的基点。温控器露在保温层的外面很容易确定,尾端一般埋于保温层中,除非手里有设计图纸,否则不容易确定。如果没有图纸,可按以下经验进行估计:
一般来说,Φ114及以下的管线平铺一根电伴热带,那么我们可以根据测电伴热带电阻计算出的电伴热带的长度,然后根据管线的长度估计出尾端的大致位置。大于Φ114的管线,一般会平铺两根(或以上),例如Φ813平铺4根电伴热带,4个温控器和4个尾端的位置一一对应(原因是电伴热带在敷设时,不允许交叉)。对于罐体来说,一般采用缠绕方式,所以温控器和尾端一般分别位于罐体的两端。
三、确定检测的起始点
确定一个好的起始点,能极大地提高检修的效率。根据现场不同的情况应进行具体分析:
对于长直管线的情况,应采用对分法进行逐步缩小范围的方法检修。一般这种情况电伴热带损坏的可能性很小。
对于弯头较多的情况,一般弯头处是比较容易损伤电伴热带的地方,我们可以由此处开始检测。
比较容易损伤电伴热带的部位还有:罐体的排污处、上下罐体之间的结合部、液位计、法兰还有阀门、仪表箱的进出口部分。这些都是需要注意的地方,可以作为起始点。
四、故障点不止一处
如果故障点多于1处,则需要用导线作为辅助进行查找,因为电伴热带的编织层被分成两段后,有可能前段和后段都存在问题,这样再次进行缩小范围的二分时,就需要将绝缘不好的那段电伴热带的编织层通过导线,与距离最近的绝缘好的电伴热带的编织层相连,然后进行绝缘测试。
品名 | 型 号 | 标称功率( W/m .10 ℃ ) | 最高维持温度 ( ℃ ) | 最高承受温度( ℃ ) | 最高表面温度( ℃ ) | 最低安装温度( ℃ ) |
低温通用型电伴热带 | DXW/DWK | 10-35 | ≤70 | 105 | ≤80 | -40 |
低温宽型电伴热带 | DXKW/DWKC | 10-35 | ≤70 | 105 | ≤80 | -40 |
中温通用型电伴热带 | ZXW/ZWK | 15-45 | ≤105 | 135 | ≤110 | -40 |
中温宽型电伴热带 | ZXKW/ZWKC | 15-45 | ≤105 | 135 | ≤110 | -40 |
高温通用型电伴热带 | GXW/WEK | 25-70 | ≤135 | 155 | ≤140 | -40 |
高温宽型电伴热带 | GXKW/GWKC | 25-70 | ≤135 | 155 | ≤140 | -40 |
采暖用自控温电伴热带 | CNXW/TXLP | 10-25 | ≤70 | 105 | ≤80 | -40 |