在波能开发利用的百年史中,虽然专利发明多达千项,而且试验成功,但被采用的为数不多,其中主要项目如下。
1、对称翼型叶片
</strong>70年代由英国韦尔斯发明,其空气驱动的涡轮叶片截面呈对称型,像一条鱼,与汽轮机叶片或螺旋桨叶片不同,当波浪起伏往返运动而使气室中的气流来回流动时,这种对称翼叶片可在相反方向气流作用下仍然保持旋转方向不变,这种自整流特性类似帆船的风帆,尽管风向多变、调节风帆迎角即可使船航向不变。具有这种叶片的气轮机已被广泛采用。
2、多共振振荡水柱
在空气室前加上引浪口,使波浪冲进空气室内的水柱与波浪的起伏冲击之间产生谐振,使装置吸收的波能增多,即用较窄迎波口便可吸收较宽的范围的波能,从而提高发电效率和降低成本。这种新技术首先用在挪威的500kW大型波电站。
3、相位控制
</strong>这也是由挪威提出来的,它通过控制能量转换机构(如水柱、浮体、摆板等)的运动相位,使其与波浪作用力的相位相适应,以便更有效地吸收波能,从而达到减小设备尺寸、提高效率的目的。
4、水阀整流
</strong>这是日本东北电力公司提出来的,是在权衡是否采用韦尔斯(气流方向来回变化时气轮机旋转方向不变)气轮机后,决定大胆采用这个新概念新技术,即在气流回路中设置正、负2个水阀室来取代过去常用的风门式逆止阀,这种风门经常受到反复冲击而损坏,而新型水阀可靠性高、便于维护。波峰时,压缩气流通过正压水阀后驱动气轮发电机轴端的转轮旋转;波谷时因负压作用从大气吸气空气流又驱动另一轴端的转轮旋转,但方向不变,即气轮机的转轮有2个,分别装在发电机轴两端,正压气流排到大气;负压则从大气吸入气流,分别先后驱动各自转轮,而发电机转向不变。与韦尔斯转轮比,多设2套水阀室,然而设备效率提高了,运行可靠性提高了,而且便于维护。因为对称翼型桨叶的效率不如通常的不对称翼型;取消风门后就减少了活动机械的磨损、损坏等故障。正、负压水阀都相当于逆水阀,两条回路各不干扰。
5、发条蓄能
这是中国云南师范大学能源处发明的,非常简单适用。波浪冲击活塞,活塞连杆带动拐臂拧紧弹簧发条蓄能器,发条持续带动大齿轮,并传动与其啮合的小齿轮,小齿轮固定在发电机轴伸端上,从而发电。传动原理类似钟表。活塞连杆上套有压缩弹簧,波峰时活塞压缩弹簧,波谷时弹簧将活塞推回原位。整套设备装在漂浮箱体内,固定在堤坝上,可上下浮动,但活塞始终迎向波浪,充分吸收波能。实现群体化可形成防洪大坝,一举两得。
6、其他创新
</strong>最近英国国家工程实验室研制一种蜗牛形中空风箱泵式海浪发电机,装机容量1.10MW,已试验成功。美国能源部技术研究所最近研制一种可将海水挤压到岸上蓄水池的波电系统,再按水位差进行低水头水轮机发电,容量为414kW。日本开发了新型产品,用于无风海岸,波力发电用于海水淡化处理。美国佛罗里达水电公司发明一种中心敞开式水轮机可用于波力发电。瑞典进行了30kW软管泵式波电设备试验,并在西班牙建造1000kW波电站。
1、日本
</strong>海洋波能的开发利用已有百年历史。法国是世界最早的(1910年),虽然日本开发较晚,但后来居上,且实现商业化较多。自60年代以来,日本就投运12台波力发电设备,除了用于验证试验外,还有4台作商业运营至今。目前,这种电站在日本已建造1000多座。其中1996年9月投运的固定式防波堤型130kW波电设备是日本最大的,它的能量转换箱体长20m、宽24m、高24m,共2个,带有8个空气室,1个异步型空气透平发电机,与6kV电力系统并网。最近,日本又投运另一种型式波电设备,即可动式浮体型,长50m、宽30m、高13m,像个大鲸鱼,浮在水面上,其容量120kW。已于1998年7月投入商业运营。80年代年,日本还在酒井港建造一座200MW的波电站,经海底电缆送电。
2、英国
与日本同属岛国的英国也十分重视波能研究开发,80年代就已成为世界波能研究中心,90年代初在苏格兰的2个岛上分别建造了振荡水柱式和岸基固定式波电站。英国发明的专利--韦尔斯气动涡轮机可在2种相反方向海流作用下做单方向旋转,现已各国推应用。1999年,英国海洋电力传输机构与苏格兰再生能源公司签订15年的电力购买合同,定于2002年8月完成并交付使用。该电站建在苏格兰西岸,发电设备采用半浸水式全交接结构,外形很像许多圆筒(直径3.5m)轴向串联一起,总长约130m,筒与筒之间设有液压活塞,在海浪作用下,通过存贮器将高压油压入油压发动机,并驱动发电机发电。输出功率为750kW,这是目前世界上最大的波电设备。存贮器能保证持续平滑的功率输出,其平衡性可与柴油发电机比美。而设备的运行则与现代的风力发电机很相似。现在英国已完成功率高达2GW的波电设备研究项目。75kW的这种设备自1992年以来商业运营至今。90年代还在毛里求斯建造一座20MW的大型波电站。
3、挪威
挪威也是开发利用波能较早的国家,与1985年在托夫特斯塔林建造的500kW波电站是上个世纪容量最大的。后来又在该地增设350kW电站。90年代初建造了用于印尼和澳大利亚的1400kW这种电站2座。挪威发明了多谐振振荡水柱和减速槽道新技术,已被广泛应用,其为塔普昌建造的波电站350kW,采用了少见的水位能转换式,堤后贮水池水面高出海面3m~8m,水轮机设计水头3m,流量14~16m3/S。从1988年起挪威帮助印尼在巴厘岛建造1500kW波电站,并拟建数百座以便实现联站并网。
4、中国
中国海域辽阔,总面积470万km2,海岸线曲折漫长,大陆岸线1.8万km,海岛岸线1.4万km,海浪能源丰富,年均波力功率在3kJ/m以上。我国波电开发较晚,1975年制成1kW波电浮标,在浙江省嵊山岛试验。自1985年起,我国研制了多种小型产品,其中有600多台作为航标灯用,并出口到日本等国。后来开发了20kW岸基固定式、5kW漂浮式、8kW摆板式等波电站。90年代,中科院广州能源所在广东汕尾建造100kW岸基固定式波电站,于2000年建成发电。后来,广州能源所又在山东、海南、广东建造了3座1000kW级这种电站。
近年来,中国经济发展迅速,因此能源紧缺,电力不足。由于水电周期太长,还存在淹汲、移民等问题;而火电燃料有限,且存在温室效应问题;另外核电成本太高,存在安全问题。所以国家非常重视清洁的可再生能源的开发利用,如风力发电、海洋发电等。针对国情,加大力度和投入,发展波电更为有利,可以联站并网,发挥密集型特点,实现群体化,可操作性很强。
此外,还有印度、印尼、西班牙、葡萄牙、瑞典、丹麦等30多个国家、地区也在大力开发波电,从几百kW到几十MW,且容量不断增大,正以10%以上的年增长率迅速发展。
至今为止,全球申请波力发电专利已超过千项,其中有20多种进行过海上试验,被较多采用的基本上属于下列3种类型:①空气能--波浪能量是一种冲击动能(与利用势能的潮汐发电不同),无法直接带动旋转的发电机发电,必须进行能量转换。而把波浪能转换为空气能是最为广泛应用的一种,即波浪冲击挤压空气室中的空气,压缩空气驱动气力涡轮机,再带动发电机发电。②机械能--将波浪能转换为机械能时可通过油压进行,即波力冲击振子,振子泵油形成压力油,油压驱动马达旋转,并带动发电机发电。③水位能--将内 海水的水斗通过连杆机构固定在岸基上,而水斗浮在水面上,被浪冲击推举水斗上升后,被连杆折翻并将斗内海水越过堤坝倒入水库,多次反复作用,就如同潮汐发电那样利用水库和海面之间的水位差来传动低水头发电机发电。
太阳能发电新技术应该基本上都是在老技术上面的一些技术突破,效率提高。 对于光伏发电来说,除了晶硅电池以外,薄膜电池,聚光电池或者算是新的方向,不能算新技术。
发光二极管(英语:Light-Emitting Diode,缩写:LED)是一种能发光的半导体电子元件,透过三价与五价元素所组成的复合光源。此种电子元件早在1962年出现,早期...
ED技术即利用LED照明:即是发光二极管照明,是一种半导体固体发光器件。它是利用固体半导体芯片作为发光材料,在半导体中通过载流子发生复合放出过剩的能量而引起光子发射,直接发出红、黄、蓝、绿色的光,在此...
波浪由风引起,但地震、火山爆发也可引起(海啸)。至于地球与月球的引力引起的大波浪,习惯上已列入潮汐的范畴。在数千km外由风暴引起并经长距离传递过来的波浪叫涌浪;在风的直接作用下产生的波浪叫风浪。波浪的特点是力大、低速(周期为几秒)、能流密度低,做无规则的往复运动。波力巨大擎入,大波浪可把重达130t的岩石抛到高达20m的岸上。波浪能流密度虽低,但其横向作用产生的能量密度很高,且沿海岸线分布,有利于开发大功率波力发电站。全球的波能如能全部转换为电能,则每年可达23650亿kWh。当波高为2m,波浪起伏周期为2.5s时,发电功率为24kW。波高3m、周期11s时为130kW。
由于波浪运动不规则,只能采用统计学来处理数据,可将波能E用下式表达(波浪横向长度为1m时的波能平均值):
E=0.5·(H1/3)2·(T1/3), kW/m
式中H1/3和T1/3分别为波高H和波周期T的算术平均值,单位分别为m和s。
计算表明,日本近海的波能平均值为7kW/m,其岸线总长约5200km,日本波能总共约为3600万kW。而我国仅大陆岸线长就达1.8万km,还有岛岸线长1.4万km,波能总计约达22400万kW。
当前波力发电设备主要分为二种:振动型(波浪上下振动)和移动型(波浪平移)。振动型包括水柱型、浮体型、固定型、可动型等4种;移动型基本上就是一种低水头发电站,此时利用大坝和转桨式水轮机。当前的发展趋势是水柱型,因为开发应用了先进的水阀室作为逆止阀,而以前常用风门作为逆止阀,经常受到反复冲击,容易损坏;另一趋势是开发固定式防波堤型,既便于建造,又能与防波堤结合,可以综合利用;第三个趋势是进一步降低造价。当今世界波力发电成本基本上接近于普通电价,出于竞争,还应继续努力进一步降低,主要是改进设备,对于日本,波能存贮量高达50GW,而波力发电比普通电价高出数倍,在降价方面,任重道远。
波力发电的原理主要是将波力转换为压缩空气来驱动空气透平发电机发电。当波浪上升时便将空气室中的空气顶上去,被压空气穿过正压水阀室进入正压气缸并驱动发电机轴伸端上的空气透平使发电机发电。当波浪落下时,空气室内形成负压,使大气中的空气被吸入气缸并驱动发电机另一轴伸端上的空气透平使发电机发电,其旋转方向不变。从中排出的空气进入负压气缸,再穿过负压水阀室并到达负压空气室。由于正、负压水阀室相当于逆止阀的作用,正、负2条回路互不干扰。用水阀作为逆止阀的原理是利用压力差,压力空气只能单向通行。
在波浪发电的百年发展中都伴随着试验、研究和探索。波力发电已由航标灯用小型化发展到与电力系统并网的中、大型化,由试验验证时代发展到商品化、商业化和国际贸易化。全世界已经确认波电是海洋能源开发利用的重要项目,是清洁无污染的可再生新能源的主要组成部分。今后的发展面临的主要科研课题如下:
1、耐久性
</strong>它比效率的提高还重要。波浪随季节和时间而变,甚至每月、每天、每小时都在变,短时间变化尚能适应,长期变化仍有困难,设备的疲劳破坏承受能力、耐久性和使用寿命,是第一位的难题。
2、蓄能性
</strong>波电的能量存贮要求方便、价廉、用汽车电池存贮虽然价廉,然而容量有限;最好是压缩空气蓄能,不仅价廉,而且适应于大容量化。
3、高效率
</strong>虽然比不过耐久性重要,但提高效率仍是永恒的课题,特别是波能转换效率,潜力仍然很大。
4、低成本
</strong>波电设备虽很简单,但其造价仍然较高。日本最新型130kW设备,沉箱6亿、发电设备5亿,共11亿日元。造价较高。计算表明,10MW波电成本约为17.3~33.1日元/kWh,成本也高。但是形成规模,实现群体化,增大容量,>10MW时成本就会降低。
5、安全性
波电设备应能在与风暴有关的大浪中自动解列,以免过载或遭受破坏。最好设有阻尼装置以免设备移动、损坏。
火力发电新技术及标准规范操作规程应用手册 作者:熊礼俭 出 版 社:中国科技文化出版社 2005 年 8 月出版 册数规格:全四卷+ 1CD 16 开豪华精装 定价:¥ 998 元 优惠价:¥450 元 详细目录: 第一篇 火力发电厂与火力发电基础 第一章 火电厂与火力发电 第二章 火电厂锅炉设备 第三章 汽轮机 第四章 汽轮机调节 第二篇 火力发电厂锅炉运行控制与故障预防技术 第一章 概述 第二章 燃烧设备及运行 第三章 过热器与再热器的运行 第四章 自然循环蒸发系统的安全运行 第五章 省煤器及给水系统运行控制技术 第六章 强制流动锅炉的水动力特性及运行 第七章 锅炉水处理及蒸汽品质 第八章 锅炉机组的运行调节 第九章 锅炉机组的运行故障及预防 第三篇 火电厂汽轮控制系统运行改造技术与改造实例 第一章 汽轮控制系统 第二章 汽轮控制系统改造模式与改造方案 第三章 高压抗燃油纯电调系统改造
波力发电技术现状及发展趋势 作者: 程友良, 党岳, 吴英杰, CHENG You-liang, DANG Yue, WU Ying-jie 作者单位: 华北电力大学能源与动力工程学院,河北,保定,071003 刊名: 应用能源技术 英文刊名: APPLIED ENERGY TECHNOLOGY 年,卷(期): 2009,""(12) 被引用次数: 0次 参考文献(21条) 1.钱伯章 新能源--后石油时代的必然选择 [期刊论文]-北京:化学工业出版社 2007 2.诸同金 海洋能资源开发利用 [期刊论文]-北京:化学工业出版社 2005 3.王长贵 . 喜文华 .张焕芬 .郭运珑 中国新能源的开发与利用 [期刊论文]-北京:能源出版社 1986 4.李充武 海洋能源开发 [期刊论文]-北京:海洋出版社 2008 5.王传(山)/( 昆) .卢苇 海洋能资源分析方法及储量
波能发电机的主体是一个长18米、宽12米、厚2米的振动器,就像一扇厚厚的“门”,用铰链固定在水深10-12米处的海底。每当波浪涌来,振动器缓缓摇动,与振动器联动的柱塞就抓取一定量的海水,下一个动作是经由水管将其高压泵出,连接到位于附近海岸上的传统方式水力发电设备,发出电力。每台波能发电机能提供多达3000个普通家庭的用电;为进一步提升效能,还可以在海中组合多台波能发电机,联动部署,为岸上的用电大户供电。
波能发电机与其他水力发电机不同,它所有的电气部件都建在陆地上,“海波能量转换成电力”这个关键步骤是由陆上发电设备完成的,这就使波能发电机本身的结构比其他大多数海中水力发电机简单得多,移动部分少,系统相对是轻量级的。2100433B
波能具有能量密度高、分布面广等优点。它是一种取之不竭的可再生清洁能源。尤其是在能源消耗较大的冬季,可以利用的波浪能能量也最大。小功率的波浪能发电,已在导航浮标、灯塔等获得推广应用。我国有广阔的海洋资源,波浪能的理论存储量为7000万千瓦左右,沿海波浪能能流密度大约为每米2千瓦~7千瓦。在能流密度高的地方,每1米海岸线外波浪的能流就足以为20个家庭提供照明。
近年来,在各国的新能源开发计划中,波能的利用已占有一席之地。尽管波能发电成本较高,需要进一步完善,但目前的进展已表明了这种新能源潜在的商业价值。日本的一座海洋波能发电厂已运行8年,电厂的发电成本虽高于其它发电方式,但对于边远岛屿来说,可节省电力传输等投资费用。目前,美、英、印度等国家已建成几十座波能发电站,且均运行良好。
破波阻力是六十年代新发现的阻力成分。特点:①是由于自由面引起的。将重叠模进行深水拖曳并进行尾流测量,没有发现次尾流区。②破波阻力随Fn增大而增大,而且服从Froude的比较定律,即Fn数相等时,破波阻力系数相等。③丰满船破波阻力较大,压载情况下破波阻力要比满载时大,因为压载时B/T值增大。破波阻力除了与船型有关外,主要与B/T和进流段长度有关。减少B/T,增大进流段长度,将能明显减少破波阻力。理论和实验都证明,采用球鼻型船首能减少破波阻力,主要原因是减少船首波的陡直程度,而且球鼻型的船首在轻载(压载)时效果较大。