半导体光放大器件是指由半导体材料制成,与半导体激光器的工作原理相同,利用能级间跃迁的受激现象进行放大。若将半导体激光器两端的反射消除,即为半导体行波放大器,当偏置电流低于振荡阀值时,激光二极管就能对输入的相干光实现光放大。半导体光放大器覆盖了1300nm~1600nm的频段,既可用于1310nm窗口又可用于1550nm窗口,且用于DWDM系统中时无需增益锁定。
不仅可以作为光放大器的一种选择方案,还可以促成1310nm窗口DWDM系统的实现。半导体光放大器的优点是体积小、结构简单、制作工艺成熟、成本低、寿命长,易于同其他光器件集成以及功耗低等;缺点是噪声和串扰较大,功率较低,放大器的增益受偏振的影响较大,与光纤的耦合损耗较大,稳定性较差等,影响了其在光纤通信系统中的应用。2100433B
光放大器按照原理可以分为:掺杂光纤放大器、传输光纤放大器和半导体激光放大器三种类型。
为什么半导体激光器一半配合掺铒光纤放大器使用,不是半导体放大器
光纤激光器,SOA半导体光放大器,EDFA掺饵光纤放大器供应
半导体元器件(semiconductor device)通常,这些半导体材料是硅、锗或砷化镓,可用作整流器、振荡器、发光器、放大器、测光器等器材。为了与集成电路相区别,有时也称为分立器件。绝大部分二端...
根据行波式半导体激光放大器的特点,可用输入功率的台劳级数表示放大器的输出功率,只要求出级数各阶导数就可以方便地计算在多路有线电视(CATV)系统中放大器引起的失真。文中给出放大器的速率方程组的解,并在此基础上导出理想放大器的前三阶导数的解析表达式。
半导体光放大器结构
半导体光放大器是一种把发光器件一一半导体激光器结构作为放大装置使用的器件因为具有能带结构所以其增益带宽比采用光纤放大器的宽。另外通过改变所使用的半导体材料的组成可以使波长使用范围超过100nm,这是半导体光放大器的一个突出特点。半导体光放大器由有源区和无源区构成,如图1所示,有源区为增益区,使用Inp这样的半导体材料制作,与半导体激光器的主要不同之处是SOA带抗反射涂层,以防止放大器端面的反射,排除共振器功效。抗反射涂层就是在端面设置单层或多层介质层。以平面波人射单层介质层时,抗反射膜的条件相对于厚度为 1/4波长。实际的放大器,传输光是数微米的点光,可以研究假想波导模严格的无反射条件。去除端面反射影响的另一种方法,也可以采用使端面倾斜的方法和窗结构。把光放大器作为光通信中继放大器使用,入射光的偏振方向是无规则的,最好是偏振波依赖性小的放大器。为了消除这种偏振波依赖性,可以引人运用窄条结构使激活波导光路近似正方形断面形状的方法和施加抗张应力,以增大TM波增益的应变量子阱结构。目前,实现偏振无关半导体光放大器的方法有很多种,如张应变量子阱结构、应变补偿结构、同时采用张应变量子阱和压应变量子阱的混合应变量子阱结构等。图2为采用脊型波导结构的应变量子阱光放大器基本结 构图。有源区4C3T采用混合应变量子阱结构,即4个压应变量子阱,3个张应变量子阱,压应变和张应变量子阱之间用与Ipn晶格匹配的宽的IaGaAsP垒层隔开上下波导层分别为波长1.15um的IaGaAsP匹配材料包层为p型Inp,接触层为重P型掺杂IaGaAsP材料,材料的外延法生长过程中,n型掺杂源为硅烷,p型掺杂源为二甲基锌材料;生长完成后,采用标准的光刻、反应离子刻蚀、湿法腐蚀、蒸发、溅射等工艺制作脊型波导结构。
早在半导体激光器出现时,就开始了对SOA的研究,但由于初期的半导体材料激光放大器偏振灵敏度较高,使得SOA一度沉寂。但近几年来应变量子阱材料的研制成功,克服了偏振敏感的缺点,性能也有许多改进。半导体光放大器的增益可以达到30dB以上,而且在1310nm窗口和1550nm窗口上都能使用。如能使其增益在相应使用波长范围保持平坦,那么它不仅可以作为光放大的一种有益的选择方案,还可促成l310nm窗口WDM系统的实现。
SOA的优点是:结构简单、体积小,可充分利用现有的半导体激光器技术,制作工艺成熟,成本低、寿命长、功耗小,且便于与其他光器件进行集成。另外,其工作波段可覆盖l.3~1.6/μm波段,这是EDFA或PDFA所无法实现的。但最大的弱点是与光纤的耦合损耗太大,噪声及串扰较大且易受环境温度影响,因此稳定性较差。SOA除了可用于光放大外,还可以作为光开关和波长变换器。