阿塔卡玛大型毫米波天线阵(Atacama Large Millimeter Array,缩写为ALMA)是多个国家的研究机构在智利北部合作建造的一台大型射电望远镜阵列,由64台口径为12米的天线组成,工作在毫米波和亚毫米波,计划于2012年完工,总投资超过10亿美元。
阿塔卡玛大型毫米波天线阵图片
中文名称 | 阿塔卡玛大型毫米波天线阵 | 外文名称 | Atacama Large Millimeter Array |
---|---|---|---|
缩写 | ALMA | 总投资 | 10亿美元 |
毫米波治疗仪的价格在9200元一台,很高兴为您解答!
毫米波安检门——未来机场、车站及重要场所人体安检之必然趋势 放眼现如今的安检领域,不乏五花八门、品...
毫米波治疗仪一台售价9800元,毫米波治疗仪是一种极高频治疗设备,是通过极高频电磁波直接照射病灶部位后,与细胞、分子产生的一种共振作用,这种作用可改善血液循环增加血流量,促进毛细血管及淋巴管的回流,改...
为了减少大型波导缝隙天线阵的设计的复杂计算,该文在Elliott设计理论基础上,提出一种新的大型波导缝隙天线阵设计方法。该方法利用传输线理论构造负载阻抗近似表达式,并使用数值迭代法直接计算缝隙的归一化导纳,从而实现辐射缝隙的设计;耦合馈电网络则采用电磁场仿真优化获得。整个设计过程具有计算量小、快速实用的优点。最后,研制了一个工作频带为35.3~39.5 GHz的32×16波导缝隙阵列,测试工作带宽达到了10.6%,H面和E面方向图的3 dB波束分别为4.2°和2.2°。
毫米波平板隙缝阵天线具有增益高、副瓣低、体积小和质量轻等优点,是毫米波雷达的关键设备。针对其多层、空腔、薄壁的复杂结构特点和加工精度高、封装性好的工艺要求,结合集成工艺设计,应用CAD/CAM一体化技术和精密连接技术,实现了天线的高技战术性能要求。
"LMT大型毫米波望远镜"是天文学专有名词。来自中国天文学名词审定委员会审定发布的天文学专有名词中文译名,词条译名和中英文解释数据版权由天文学名词委所有。
中文译名 | LMT大型毫米波望远镜 |
英文原名/注释 | 全称:Large millimeter Telescope。缩写:LMT |
Atazar Dam
坝址基岩主要为志留系板岩,具有很强的不透水性。两岸岸坡上有两组断裂带,其中一组大致水平,另一组与河床垂直。
坝址以上控制流域面积为924平方公里,多年平均径流量3.85亿立方米,年平均流量12立方米/秒,设计洪水流量1000立方米/秒,水库正常蓄水位870m,蓄水面积10.69平方公里。
当前的毫米波通信系统主要包括地球上的点对点通信和通过卫星的通信或广播系统。地球上的点对点毫米波通信一般用于对保密要求较高的接力通信中。毫米波本身就具有很强的隐蔽性和抗干扰性,同时由于毫米波在大气中的衰减和使用小口径天线就可以获得极窄的波束和很小的旁瓣,所以对毫米波通信的截获和干扰变得非常困难。
毫米波地面通信系统的传统应用是接力(中继)通信。毫米波传播的大量试验表明,利用多跳的毫米波接力(中继)通信是可行的。为了减少风险,首先从毫米波频段的低端和厘米波频段的高端入手。在开发高频段大容量通信系统的同时,更高频段的中、低容量短程毫米波通信设备也相继出台。
到20世纪90年代,迎来了全球信息化的浪潮。因特网迅猛发展,交互多媒体业务、宽带视频业务以及专用网络和无线电通信的业务量的急剧增长,迫切需要提高传输速率、传输带宽和传输质量。用户对宽带接入的需求日益强烈,推动了各种宽带接入网络和设备的研发,利用毫米波的无线宽带接入技术应运而生。
由于丰富的频率资源,在卫星通信中毫米波通信得到了迅速发展。例如,在星际通信时一般使用5mm(60GHz)波段,因为在此频率处大气损耗极大,地面无法对星际通信内容进行侦听。而在星际由于大气极为稀薄,不会造成信号的衰落。美国的“战术、战略和中继卫星系统”就是一个例子。该系统由五颗卫星组成,上行频率为44GHz,下行频率为20GHz,带宽为2GHz,星际通信频率为60GHz。
与其他通信方式相比,卫星通信的主要优点是:a)通信距离远,建站成本与通信距离无关。b)以广播方式工作,便于实现多址连接。c)通信容量大,能传送的业务类型多。d)可以自发、自收、监测等。20世纪70~80年代,卫星通信大多是利用对地静止轨道(又称同步轨道)进行的。到20世纪90年代以后,利用中、低轨道的卫星通信系统纷至沓来。但是在大容量通信服务方面,利用对地静止轨道的卫星通信系统仍然是唱主角的。据统计,20世纪90年代的10年间,发射送入同步轨道上的通信卫星多达200颗,其中C波段的最多,Ku波段的次之。由此带来的卫星通信频谱拥挤问题也日益突出,向更高频段推进已成为必然趋势。
实际上早在20世纪70年代初,就已经开始了毫米波卫星通信的实验研究。此领域大部分开发工作在美国、前苏联和日本进行。到20世纪80年代末至90年代,除了推出继续用于范围更广、内容更多的毫米波频段实验卫星外,开始出现了实用化的Ka波段卫星通信系统。需要指出的是,其中许多卫星采用了一系列先进的技术,包括多波束天线、星上交换、星上处理和高速传输等。