MOS管功率放大器电路图硬件电路设计

带阻滤波电路的设计

采用OP07组成的二阶带阻滤波器的阻带范围为40~60 Hz,其电路如图2所示。带阻滤波器的性能参数有中心频率ω0或f0,带宽BW和品质因数Q。Q值越高,阻带越窄,陷波效果越好。

放大电路的设计

电压放大电路可选用两个INA128芯片来对微弱信号进行放大。若采用一级放大,当放大倍数较大时,电路可能不稳定,故应采用两级放大,并在级间采用电容耦合电路,图3所示是其电路图。图中,INA128具有低失调电压漂移和低噪声等性能指标,且放大倍数设置简单,只用一个外部电阻就能改变放大倍数。图3中1、8脚跨接的电阻就是用来调整放大倍率,4、7脚需提供正负相等的工作电压,2、3脚输入要放大的电压,并从6脚输出放大的电压值。5脚则是参考基准,如果接地,则6脚的输出即为与地之间的相对电压。

功率放大电路的设计

功率放大电路往往要求其驱动负载的能力较强,从能量控制和转换的角度来看,功率放大电路与其它放大电路在本质上没有根本的区别,只是功放既不是单纯追求输出高电压,也不是单纯追求输出大电流,而是追求在电源电压确定的情况下,输出尽可能大的功率。

本电路采用两个MOS管构成的功率放大电路,其电路如图4所示。此电路分别采用一个N沟道和一个P沟道场效应管对接而成,其中RP2和RP3为偏置电阻,用来调节电路的静态工作点。特征频率fT放大电路上限频率fH的关系为:fT≈fhβh,系统阶跃相应的上升时间tr与放大电路上限频率的关系为:trfh=0.35。

对于OCL放大器来说,一般有:PTM≈0.2POM,其中PIM为单管的最大管耗,POM为最大不失真输出管耗。根据计算,并考虑到项目要求,本设计选用IRF950和IRF50来实现功率放大。

AD转换电路的设计

此工作可由单片机内部的10位AD转换器完成,但实验发现,单片机的10位AD芯片的处理效果不是很好。因此本设计采用了两个AD转换芯片来对负载输出的信号进行转换,并使用单片机控制计算,然后送入液晶显示其功率和效率。

AD1674是一片高速12位逐次比较型A/D转换器,该芯片内置双极性电路构成的混合集成转换器,具有外接元件少,功耗低,精度高等特点,并具有自动校零和自动极性转换功能,故只需外接少量的电阻和电容元件即可构成一个完整的A/D转换器。AD8326是TI公司推出的16位高速模数转换器,其转换速度快,线性度好,精度高。AD8326和A1674的电路连接图分别如《转换电路》图中图5和图6所示。

显示电路

本电路采用12864液晶来实时显示输出的功率、直流电源供给的功率和整机效率。该液晶具有屏幕反应速度快、对比度高、功耗低等优点。可以实现友好的人机交互。为了简化电路,本设计采用串口连接。并在单片机的控制下,按照要求的格式显示接收到的数据和字符信息。图7为液晶显示电路的连接图。其中D0~D7为数据口,R/W为液晶读写信号,E是使能端。

系统软件设计

由于本系统是低频正弦信号的功率放大,要求能测量并显示输出功率、整机效率等信息,所以要用到AD转换。AD芯片测量的交流信号,所以,测量的电压数据进行比较,以获得最大电压值,此值即为正弦信号的最大值。而要想得到正弦信号的有效值,就要对最大值进行处理,从而获得有效值。这样,就可以将电源的输出功率和供给功率,根据欧姆定律计算出其数值,并将测得的数据用液晶适时的显示出来。

因此,本系统软件实现的功能应当可以实现对正弦信号有效值的测量;同时能够通过液晶准确显示输出功率和系统供给功率和整机效率。

图8所示是本系统软件的设计流程图。

MOS管功率放大器电路图造价信息

市场价 信息价 询价
材料名称 规格/型号 市场价
(除税)
工程建议价
(除税)
行情 品牌 单位 税率 供应商 报价日期
广播功率放大器 300W 查看价格 查看价格

荣夏

13% 江苏荣夏安全科技有限公司
功率放大器 JBF-11SF-P500W 查看价格 查看价格

北大青鸟

13% 青鸟消防股份有限公司
高效数字功率放大器 X-DA2250 查看价格 查看价格

13% 黑龙江柏禾电子科技有限公司
广播功率放大器 GST-GF500WA 查看价格 查看价格

13% 海湾安全技术有限公司(湖州市厂商期刊)
广播功率放大器 GRT3XM-01 3W 查看价格 查看价格

13% 青鸟消防股份有限公司(湖州市厂商期刊)
高效数字功率放大器 X-DA4060 查看价格 查看价格

13% 黑龙江柏禾电子科技有限公司
广播功率放大器 HY2732D1/300W 查看价格 查看价格

13% 四川久远智能监控有限责任公司(湖州市厂商期刊)
广播功率放大器 GST-GF150W 150W 查看价格 查看价格

13% 海湾安全技术有限公司
材料名称 规格/型号 除税
信息价
含税
信息价
行情 品牌 单位 税率 地区/时间
功率放大器 AFN-FGF70 查看价格 查看价格

湛江市2005年1月信息价
功率放大器 AFN-FGF350 查看价格 查看价格

湛江市2005年1月信息价
功率放大器 TOA VP-1240B 查看价格 查看价格

深圳市2003年1月信息价
功率放大器 DSP MP-2500 查看价格 查看价格

深圳市2003年1月信息价
功率放大器 AFN-FGF150 查看价格 查看价格

湛江市2005年1月信息价
功率放大器 AFN-FGF250 查看价格 查看价格

湛江市2005年1月信息价
60W功率放大器 TOA V-1000RD 查看价格 查看价格

深圳市2003年1月信息价
功率放大器(BA) 查看价格 查看价格

广东2022年2季度信息价
材料名称 规格/需求量 报价数 最新报价
(元)
供应商 报价地区 最新报价时间
功率放大器 功率放大器|8套 2 查看价格 广州迪士普音响科技有限公司 全国   2022-07-19
功率放大器 功率放大器|1套 1 查看价格 深圳市鹏润青鸟消防设备有限公司 广东   2021-04-06
功率放大器 功率放大器|1台 3 查看价格 广州欧比克电子科技有限公司 四川  成都市 2021-11-25
功率放大器 功率放大器|1个 1 查看价格 广州市保伦电子有限公司 全国   2021-11-16
功率放大器 功率放大器|1套 1 查看价格 深圳市赋安安全系统有限公司 广东   2021-04-06
功率放大器 功率放大器|1套 1 查看价格 深圳市泛海三江电子有限公司 广东   2021-04-06
数字功率放大器 数字功率放大器|1个 1 查看价格 上海广辽电子科技有限公司 全国   2019-11-19
功率放大器 功率放大器|2台 1 查看价格 广州市保伦电子有限公司 四川   2019-04-18

MOS管功率放大器电路图系统设计

电路实现简单,功耗低,性价比很高。该电路,图1所示是其组成框图。电路稳压电源模块为系统提供能量;带阻滤波电路要实现50Hz频率点输出功率衰减;电压放大模块采用两级放大来将小信号放大,以便为功率放大提供足够电压;功率放大模块主要提高负载能力;AD转换模块便于单片机信号采集;显示模块则实时显示功率和整机效率。

MOS管功率放大器电路图硬件电路设计常见问题

  • 跪求低频功率放大器电路图

    TDA2030集成电路功率放大器设计 一、 设计题目 集成电路功率放大器 二、给定条件 设计一款额定输出功率为10 ~ 20W的低失真集成电路功率放大器,要求电路简洁,制作方便、性能可靠。性能主要...

  • 低频功率放大器 电路图

    这个参考参考

  • 缓冲放大器的电路图怎么画

    电压跟随器就是个缓冲放大器了,或者一级电压跟随器作为缓冲级,后跟一级放大器亦可;电压跟随器可由运放构成,或者是一个发射极输出的三极管电路,这电路图你应该会吧;

MOS管功率放大器电路图硬件电路设计文献

音频功率放大器电路图 音频功率放大器电路图

格式:pdf

大小:161KB

页数: 6页

评分: 4.5

音频功率放大器的组成 .1 整体电路原理 本立体声功率放大器所用的核心芯片是国际通用高保真音频功率放大集成 电路 TDA2030A。本电路由三 个部分组成,即电源电路、左右声道的功率放大器 及输入信号处理电源 (四运放)。电源变压器将 220V交流电降为双 12V低压交流 电,经桥式整流后变为± 18V 的直流电,作为功放及运放的供电电源, D5、R29 组成电源指示电路,以指示电源是否正常,开关 K为电源开关。 图一 整体电路原理图 表一 元件清单 序号 名称 型号 位号 封装 备注 1 电阻器 RT14-0.125-51K-5% R1 AXIAL0.4 2 电阻器 RT14-0.125-10-5% R2 AXIAL0.4 3 电阻器 RT14-0.125-1K-5% R3 AXIAL0.4 4 电阻器 RT14-0.125-1K-5% R4 AXIAL0.4 5 电阻器 RT1

立即下载
【2019年整理】功率放大器电路图全集 【2019年整理】功率放大器电路图全集

格式:pdf

大小:161KB

页数: 5页

评分: 4.5

【2019年整理】功率放大器电路图全集

立即下载

mos晶体管简介

​MOS晶体管金属-氧化物-半导体(Metal-Oxide-Semiconductor)结构的晶体管简称MOS晶体管,有P型MOS管和N型MOS管之分。MOS管构成的集成电路称为MOS集成电路,而PMOS管和NMOS管共同构成的互补型MOS集成电路即为CMOS-IC。

金属-氧化物-半导体(Metal-Oxide-Semiconductor)结构的晶体管简称MOS晶体管,有P型MOS管和N型MOS管之分。MOS管构成的集成电路称为MOS集成电路,而PMOS管和NMOS管共同构 成的互补型MOS集成电路即为CMOS-IC

MOS管发热分析

做电源设计,或者做驱动方面的电路,难免要用到MOS管。MOS管有很多种类,也有很多作用。做电源或者驱动的使用,当然就是用它的开关作用。

无论N型或者P型MOS管,其工作原理本质是一样的。MOS管是由加在输入端栅极的电压来控制输出端漏极的电流。MOS管是压控器件它通过加在栅极上的电压控制器件的特性,不会发生像三极管做开关时的因基极电流引起的电荷存储效应,因此在开关应用中,MOS管的开关速度应该比三极管快。其主要原理如图:图1。

图1 MOS管的工作原理

我们在开关电源中常用MOS管的漏极开路电路,如图2漏极原封不动地接负载,叫开路漏极,开路漏极电路中不管负载接多高的电压,都能够接通和关断负载电流。是理想的模拟开关器件。这就是MOS管做开关器件的原理。当然MOS管做开关使用的电路形式比较多了。

图2 NMOS管的开路漏极电路

在开关电源应用方面,这种应用需要MOS管定期导通和关断。比如,DC-DC电源中常用的基本降压转换器依赖两个MOS管来执行开关功能,这些开关交替在电感里存储能量,然后把能量释放给负载。我们常选择数百kHz乃至1MHz以上的频率,因为频率越高,磁性元件可以更小更轻。在正常工作期间,MOS管只相当于一个导体。因此,我们电路或者电源设计人员最关心的是MOS的最小传导损耗。

我们经常看MOS管的PDF参数,MOS管制造商采用RDS(ON)参数来定义导通阻抗,对开关应用来说,RDS(ON)也是最重要的器件特性。数据手册定义RDS(ON)与栅极(或驱动)电压VGS以及流经开关的电流有关,但对于充分的栅极驱动,RDS(ON)是一个相对静态参数。一直处于导通的MOS管很容易发热。另外,慢慢升高的结温也会导致RDS(ON)的增加。MOS管数据手册规定了热阻抗参数,其定义为MOS管封装的半导体结散热能力。RθJC的最简单的定义是结到管壳的热阻抗。

其发热情况有:

1.电路设计的问题,就是让MOS管工作在线性的工作状态,而不是在开关状态。这也是导致MOS管发热的一个原因。如果N-MOS做开关,G级电压要比电源高几V,才能完全导通,P-MOS则相反。没有完全打开而压降过大造成功率消耗,等效直流阻抗比较大,压降增大,所以U*I也增大,损耗就意味着发热。这是设计电路的最忌讳的错误。

2.频率太高,主要是有时过分追求体积,导致频率提高,MOS管上的损耗增大了,所以发热也加大了。

3.没有做好足够的散热设计,电流太高,MOS管标称的电流值,一般需要良好的散热才能达到。所以ID小于最大电流,也可能发热严重,需要足够的辅助散热片。

4.MOS管的选型有误,对功率判断有误,MOS管内阻没有充分考虑,导致开关阻抗增大。

首先考察一个更简单的器件--MOS电容--能更好的理解MOS管。这个器件有两个电极,一个是金属,另一个是extrinsic silicon(外在硅),他们之间由一薄层二氧化硅分隔开。金属极就是GATE,而半导体端就是backgate或者body。他们之间的绝缘氧化层称为gate dielectric(栅介质)。图示中的器件有一个轻掺杂P型硅做成的backgate。这个MOS 电容的电特性能通过把backgate接地,gate接不同的电压来说明。MOS电容的GATE电位是0V。金属GATE和半导体BACKGATE在WORK FUNCTION上的差异在电介质上产生了一个小电场。在器件中,这个电场使金属极带轻微的正电位,P型硅负电位。这个电场把硅中底层的电子吸引到表面来,它同时把空穴排斥出表面。这个电场太弱了,所以载流子浓度的变化非常小,对器件整体的特性影响也非常小。

当MOS电容的GATE相对于BACKGATE正偏置时发生的情况。穿过GATE DIELECTRIC的电场加强了,有更多的电子从衬底被拉了上来。同时,空穴被排斥出表面。随着GATE电压的升高,会出现表面的电子比空穴多的情况。由于过剩的电子,硅表层看上去就像N型硅。掺杂极性的反转被称为inversion,反转的硅层叫做channel。随着GATE电压的持续不断升高,越来越多的电子在表面积累,channel变成了强反转。Channel形成时的电压被称为阈值电压Vt。当GATE和BACKGATE之间的电压差小于阈值电压时,不会形成channel。当电压差超过阈值电压时,channel就出现了。

MOS电容:(A)未偏置(VBG=0V),(B)反转(VBG=3V),(C)积累(VBG=-3V)。

正是当MOS电容的GATE相对于backgate是负电压时的情况。电场反转,往表面吸引空穴排斥电子。硅表层看上去更重的掺杂了,这个器件被认为是处于accumulation状态了。

MOS电容的特性能被用来形成MOS管。Gate,电介质和backgate保持原样。在GATE的两边是两个额外的选择性掺杂的区域。其中一个称为source,另一个称为drain。假设source 和backgate都接地,drain接正电压。只要GATE对BACKGATE的电压仍旧小于阈值电压,就不会形成channel。Drain和backgate之间的PN结反向偏置,所以只有很小的电流从drain流向backgate。如果GATE电压超过了阈值电压,在GATE电介质下就出现了channel。这个channel就像一薄层短接drain和source的N型硅。由电子组成的电流从source通过channel流到drain。总的来说,只有在gate 对source电压V 超过阈值电压Vt时,才会有drain电流。

在对称的MOS管中,对source和drain的标注有一点任意性。定义上,载流子流出source,流入drain。因此Source和drain的身份就靠器件的偏置来决定了。有时晶体管上的偏置电压是不定的,两个引线端就会互相对换角色。这种情况下,电路设计师必须指定一个是drain另一个是source。

Source和drain不同掺杂不同几何形状的就是非对称MOS管。制造非对称晶体管有很多理由,但所有的最终结果都是一样的。一个引线端被优化作为drain,另一个被优化作为source。如果drain和source对调,这个器件就不能正常工作了。

晶体管有N型channel所有它称为N-channel MOS管,或NMOS。P-channel MOS(PMOS)管也存在,是一个由轻掺杂的N型BACKGATE和P型source和drain组成的PMOS管。如果这个晶体管的GATE相对于BACKGATE正向偏置,电子就被吸引到表面,空穴就被排斥出表面。硅的表面就积累,没有channel形成。如果GATE相对于BACKGATE反向偏置,空穴被吸引到表面,channel形成了。因此PMOS管的阈值电压是负值。由于NMOS管的阈值电压是正的,PMOS的阈值电压是负的,所以工程师们通常会去掉阈值电压前面的符号。一个工程师可能说,"PMOS Vt从0.6V上升到0.7V", 实际上PMOS的Vt是从-0.6V下降到-0.7V。

MOS管功率放大器电路图相关推荐
  • 相关百科
  • 相关知识
  • 相关专栏