D类功放电感简介
数字功放具有失真小、噪音低、动态范围大等特点,在音质的透明度、解析力、低频的震撼力度方面是传统功放不可比拟的。理论上讲,如果选用理想的开关元件,数字功放的效率可以达到100%,很多工程师都在朝着这一目标而努力。
在被动元件的选择方面,早期是用开放式的工型电感,这种电感不管是在效率还是抗干扰能力方面都比较低;随后出现了屏蔽式的插件电感,屏蔽式电感在抗干扰能力方面有所提升,但是效率方面还是没能有所提升;与屏蔽式插件电感同期的还有环形电感,环形电感在抗干扰能力和效率方面都有很的提升,但是因其材质的原因,其线性度比较差;接着就是数字功放电感的出现,因其使用锰锌铁氧体磁芯及其特殊的EP/EPI磁芯结构,让在具有极好的屏蔽效果与效率,另外在音频滤波方面,其线性度要优于环形电感。
1、优秀的焊接及耐热性;
2、特殊磁屏蔽结构、可以降低噪音、低辐射;
3、超大的额定电流,低直流电阻;
4、较宽频率应用范围;
5、高音质低失真的最佳设计;
6、能高效配合客户,缩短客户采购周期;
7、适用于数字功放扼流。如汽车音响、LED电视盒PDP电视、5.1声道家庭影院等。
CSD0910A,CSD0910B,CSD1013B,CSD1065A;CPD1326B,CPD1370,CPD1415B,CPD1480,CPD1495,CPD1715,CPD2320,CPD3119。2100433B
接好各个音箱的连线,正负极要接的一致。音箱的摆放尽量对称。放一张正版的音乐盘,用遥控(或在主机上)分别调整中置、和环绕箱的音量(到自己喜欢的大小)。比如环绕声小了,就感觉后面没声,过大就会老听见后面响...
D类功放指的是D类音频功率放大器(有时也称为数字功放)。通过控制开关单元的ON/OFF,驱动扬声器的放大器称D类放大器。D类放大器首次提出于1958年,近些年已逐渐流行起来。已经问世多年,与一...
. 输入信号是零时,输出占空比50%的高频方波,它的音频成分是零,不会对喇叭做功;高频成分加在电感上,虽有电流,但电感是储能元件不是耗能元件,理论上也不做功,而实际上由于功放内...
防空警报的D类放大器,既能提供高效率大功率又能实现高保真的音频性能。详细阐述了各种功率放大器的原理和特点,并对比分析各自的优缺点,在此基础上提出了所研究的基于CMOS结构的D类音频功率放大器,并详细介绍了其工作原理;并设计出了一千瓦的高效率D类音频功率放大器。
在音响领域里人们一直坚守着A类功放的阵地。认为A类功放声音最为优秀,具有很高的保真度。但是,A类功放的低效率和高损耗却是它无法克服的先天顽疾。B类功放虽然效率提高很多,但实际效率仅为50%左右,在小型便携式音响设备如汽车功放、笔记本电脑音频系统和专业超大功率功放场合,仍感效率偏低不能令人满意。所以,效率极高的D类功放,因其符合绿色革命的潮流正受着各方面的重视。 由于集成电路技术的发展,原来用分立元件制作的很复杂的调制电路,无论在技术上还是在价格上均已不成问题。而且近年来数字音响技术的发展,人们发现D类功放与数字音响有很多相通之处,进一步显示出D类功放的发展优势。
D类功放是放大元件处于开关工作状态的一种放大模式。无信号输入时放大器处于截止状态,不耗电。工作时,靠输入信号让晶体管进入饱和状态,晶体管相当于一个接通的开关,把电源与负载直接接通。理想晶体管因为没有饱和压降而不耗电,实际上晶体管总会有很小的饱和压降而消耗部分电能。这种耗电只与管子的特性有关,而与信号输出的大小无关,所以特别有利于超大功率的场合。在理想情况下,D类功放的效率为100%,B类功放的效率为78.5%,A类功放的效率才50%或25%(按负载方式而定)。
D类功放实际上具有开关功能,早期仅用于继电器和电机等执行元件的开关控制电路中。然而,开关功能(也就是产生数字信号的功能)随着数字音频技术研究的不断深入,用与Hi-Fi音频放大的道路却日益畅通。20世纪60年代,设计人员开始研究D类功放用于音频的放大技术,70年代Bose公司就开始生产D类汽车功放。一方面汽车用蓄电池供电需要更高的效率,另一方面空间小无法放入有大散热板结构的功放,两者都希望有D类这样高效的放大器来放大音频信号。其中关键的一步就是对音频信号的调制。
D类功放设计考虑的角度与AB类功放完全不同。此时功放管的线性已没有太大意义,更重要的开关响应和饱和压降。由于功放管处理的脉冲频率是音频信号的几十倍,且要求保持良好的脉冲前后沿,所以管子的开关响应要好。另外,整机的效率全在于管子饱和压降引起的管耗。所以,饱和管压降小不但效率高,功放管的散热结构也能得到简化。若干年前,这种高频大功率管的价格昂贵,在一定程度上限制了D类功放的发展。现在小电流控制大电流的MOSFET已普遍运用于工业领域,特别是近年来UHC MOSFET已在Hi-Fi功放上应用,器件的障碍已经消除。
调制电路也是D类功放的一个特殊环节。要把20KHz以下的音频调制成PWM信号,三角波的频率至少要达到200KHz。频率过低达到同样要求的THD标准,对无源LC低通滤波器的元件要求就高,结构复杂。频率高,输出波形的锯齿小,更加接近原波形,THD小,而且可以用低数值、小体积和精度要求相对差一些的电感和电容来制成滤波器,造价相应降低。但此时晶体管的开关损耗会随频率上升而上升,无源器件中的高频损耗、射频的聚肤效应都会使整机效率下降。更高的调制频率还会出现射频干扰,所以调制频率也不能高于1MHz。
同时,三角波形的形状、频率的准确性和时钟信号的抖晃都会影响到以后复原的信号与原信号不同而产生失真。所以要实现高保真,出现了很多与数字音响保真相同的考虑。
还有一个与音质有很大关系的因数就是位于驱动输出与负载之间的无源滤波器。该低通滤波器工作在大电流下,负载就是音箱。严格地讲,设计时应把音箱阻抗的变化一起考虑进去,但作为一个功放产品指定音箱是行不通的,所以D类功放与音箱的搭配中更有发烧友驰骋的天地。实际证明,当失真要求在0.5%以下时,用二阶Butterworth最平坦响应低通滤波器就能达到要求。如要求更高则需用四阶滤波器,这时成本和匹配等问题都必须加以考虑。
近年来,一般应用的D类功放已有集成电路芯片,用户只需按要求设计低通滤波器即可。
D类功放设计考虑的角度与AB类功放完全不同。此时功放管的线性已没有太大意义,更重要的开关响应和饱和压降。由于功放管处理的脉冲频率是音频信号的几十倍,且要求保持良好的脉冲前后沿,所以管子的开关响应要好。另外,整机的效率全在于管子饱和压降引起的管耗。所以,饱和管压降小不但效率高,功放管的散热结构也能得到简化。若干年前,这种高频大功率管的价格昂贵,在一定程度上限制了D类功放的发展。小电流控制大电流的MOSFET已普遍运用于工业领域,特别是近年来UHC MOSFET已在Hi-Fi功放上应用,器件的障碍已经消除。
调制电路也是D类功放的一个特殊环节。要把20KHz以下的音频调制成PWM信号,三角波的频率至少要达到200KHz。频率过低达到同样要求的THD标准,对无源LC低通滤波器的元件要求就高,结构复杂。频率高,输出波形的锯齿小,更加接近原波形,THD小,而且可以用低数值、小体积和精度要求相对差一些的电感和电容来制成滤波器,造价相应降低。但此时晶体管的开关损耗会随频率上升而上升,无源器件中的高频损耗、射频的聚肤效应都会使整机效率下降。更高的调制频率还会出现射频干扰,所以调制频率也不能高于1MHz。
同时,三角波形的形状、频率的准确性和时钟信号的抖晃都会影响到以后复原的信号与原信号不同而产生失真。所以要实现高保真,出现了很多与数字音响保真相同的考虑。
还有一个与音质有很大关系的因数就是位于驱动输出与负载之间的无源滤波器。该低通滤波器工作在大电流下,负载就是音箱。严格地讲,设计时应把音箱阻抗的变化一起考虑进去,但作为一个功放产品指定音箱是行不通的,所以D类功放与音箱的搭配中更有发烧友驰骋的天地。实际证明,当失真要求在0.5%以下时,用二阶Butterworth最平坦响应低通滤波器就能达到要求。如要求更高则需用四阶滤波器,这时成本和匹配等问题都必须加以考虑。
近年来,一般应用的D类功放已有集成电路芯片,用户只需按要求设计低通滤波器即可。