3D打印限制因素
材料的限制
虽然高端工业印刷可以实现塑料、某些金属或者陶瓷打印, 但无 法实现打印的材料都是比较昂贵和稀缺的。另外,打印机也还没有达到成熟的水平,无法支持日常生活中所接触到的各种各样的材料。
研究者们在多材料打印上已经取得了一定的进展,但除非这些进展达到成熟并有效,否则材料依然会是3D打印的一大障碍。
机器的限制
3D打印技术在重建物体的几何形状和机能上已经获得了一定的水平,几乎任何静态的形状都可以被打印出来,但是那些运动的物体和它们的清晰度就难 以实现了。这个困难对于制造商来说也许是可以解决的,但是3D打印技术想要进入普通家庭,每个人都能随意打印想要的东西,那么机器的限制就必须得到解决才行。
知识产权的忧虑
在过去的几十年里,音乐、电影和电视产业中对知识产权的关注变得越来越多。3D打印技术也会涉及到这一问题,因为现实中的很多东西都会得到更 加广泛的传播。人们可以随意复制任何东西,并且数量不限。如何制定3D打印的法律法规用来保护知识产权,也是我们面临的问题之一,否则就会出现泛滥的现象。
道德的挑战
道德是底线。什么样的东西会违反道德规律是很难界定的,如果有人打印出生物器官和活体组织,在不久的将来会遇到极大的道德挑战。
花费的承担
3D打印技术需要承担的花费是高昂的。第一台3D打印机的售价为1万5。如果想要普及到大众,降价是必须的,但又会与成本形成冲突。
每一种新技术诞生初期都会面临着这些类似的障碍,但相信找到合理的解决方案3D打印技术的发展将会更加迅速,就如同任何渲染软件一样,不断地更新才能达到最终的完善。
3D打印打印过程
三维打印的设计过程是:先通过计算机建模软件建模,再将建成的三维模型“分区”成逐层的截面,即切片,从而指导打印机逐层打印。
设计软件和打印机之间协作的标准文件格式是STL文件格式。一个STL文件使用三角面来近似模拟物体的表面。三角面越小其生成的表面分辨率越高。PLY是一种通过扫描产生的三维文件的扫描器,其生成的VRML或者WRL文件经常被用作全彩打印的输入文件。
打印机通过读取文件中的横截面信息,用液体状、粉状或片状的材料将这些截面逐层地打印出来,再将各层截面以各种方式粘合起来从而制造出一个实体。这种技术的特点在于其几乎可以造出任何形状的物品。
打印机打出的截面的厚度(即Z方向)以及平面方向即X-Y方向的分辨率是以dpi(像素每英寸)或者微米来计算的。一般的厚度为100微米,即0.1毫米,也有部分打印机如ObjetConnex 系列还有三维 Systems' ProJet 系列可以打印出16微米薄的一层。而平面方向则可以打印出跟激光打印机相近的分辨率。打印出来的“墨水滴”的直径通常为50到100个微米。 用传统方法制造出一个模型通常需要数小时到数天,根据模型的尺寸以及复杂程度而定。而用三维打印的技术则可以将时间缩短为数个小时,当然其是由打印机的性能以及模型的尺寸和复杂程度而定的。
传统的制造技术如注塑法可以以较低的成本大量制造聚合物产品,而三维打印技术则可以以更快,更有弹性以及更低成本的办法生产数量相对较少的产品。一个桌面尺寸的三维打印机就可以满足设计者或概念开发小组制造模型的需要。
三维打印机的分辨率对大多数应用来说已经足够(在弯曲的表面可能会比较粗糙,像图像上的锯齿一样),要获得更高分辨率的物品可以通过如下方法:先用当前的三维打印机打出稍大一点的物体,再稍微经过表面打磨即可得到表面光滑的“高分辨率”物品。
有些技术可以同时使用多种材料进行打印。有些技术在打印的过程中还会用到支撑物,比如在打印出一些有倒挂状的物体时就需要用到一些易于除去的东西(如可溶的东西)作为支撑物。
3D打印原理技术
日常生活中使用的普通打印机可以打印电脑设计的平面物品,而所谓的3D打印机与普通打印机工作原理基本相同,只是打印材料有些不同,普通打印机的打印材料是墨水和纸张,而3D打印机内装有金属、陶瓷、塑料、砂等不同的“打印材料”,是实实在在的原材料,打印机与电脑连接后,通过电脑控制可以把“打印材料”一层层叠加起来,最终把计算机上的蓝图变成实物。通俗地说,3D打印机是可以“打印”出真实的3D物体的一种设备,比如打印一个机器人、打印玩具车,打印各种模型,甚至是食物等等。之所以通俗地称其为“打印机”是参照了普通打印机的技术原理,因为分层加工的过程与喷墨打印十分相似。这项打印技术称为3D立体打印技术。
3D打印存在着许多不同的技术。它们的不同之处在于以可用的材料的方式,并以不同层构建创建部件。3D打印常用材料有尼龙玻纤、聚乳酸、ABS树脂、耐用性尼龙材料、石膏材料、铝材料、钛合金、不锈钢、镀银、镀金、橡胶类材料。
类型 | 累积技术 | 基本材料 |
---|---|---|
挤压 | 熔融沉积式 (FDM) | 热塑性塑料,共晶系统金属、可食用材料 |
线 | 电子束自由成形制造(EBF) | 几乎任何合金 |
粒状 | 直接金属激光烧结(DMLS) | 几乎任何合金 |
电子束熔化成型(EBM) | 钛合金 | |
选择性激光熔化成型(SLM) | 钛合金,钴铬合金,不锈钢,铝 | |
选择性热烧结(SHS) | 热塑性粉末 | |
选择性激光烧结(SLS) | 热塑性塑料、金属粉末、陶瓷粉末 | |
粉末层喷头3D打印 | 石膏3D打印 (PP) | 石膏 |
层压 | 分层实体制造(LOM) | 纸、金属膜、塑料薄膜 |
光聚合 | 立体平板印刷(SLA) | 光硬化树脂 |
数字光处理 (DLP) | 光硬化树脂 |
3D打印机简称是一位名为恩里科·迪尼的发明家设计的一种神奇的打印机
gaokeji
3D打印社会评价
3D打印技术是无法应用于大量生产,所以有些专家鼓吹3D打印是第三次工业革命,这个说法只是个噱头。富士康为苹果代工生产iPhone已经多年。郭台铭以3D打印制造的手机为例,说明3D打印的产品只能看不能用,因为这些产品上不能加上电子元器件,无法为电子产品量产。3D打印即使不生产电子产品,但受材料的限制,可以生产的其他产品也很少,“即使生产出来的产品,也无法量产,而且一摔就碎。
“3D打印的确更适合一些小规模制造,尤其是高端的定制化产品,比如汽车零部件制造。虽然主要材料还是塑料,但未来金属材料肯定会被运用到3D打印中来,”克伦普说,3D打印技术先后进入了牙医、珠宝、医疗行业,未来可应用的范围会越来越广。2014年11月末,3D打印技术被《时代》周刊为2014年25项年度最佳发明。对消费者和企业而言,这是个福音。仅在过去一年中,中学生们3D打印了用于物理课实验的火车车厢,科学家们3D打印了人类器官组织,通用电气公司则使用3D打印技术改进了其喷气引擎的效率。美国三维系统公司的3D打印机能打印糖果和乐器等,该公司首席执行官阿维·赖兴塔尔说:“这的确是一种巧夺天工的技术。”
标准和标准的制定机构
当一间实验室作出了图纸,需要拿出来共享时,会发现有太多的格式和标准了,因此,3D 打印原型机这个领域看起来像是野蛮生长,毫无标准。
开源的设计、配置和软件
当有了统一的标准后,3D 打印行业将会迎来开源。现在,太多的团队注重提高自己的3D 打印水平,在自我的闭环中发展。实际上,行业需要设备和软件的开源,在统一的标准下产生更多有用、高效、开放的创新。
原型机实验室
原型机打印并不受到重视,所以现在很多医疗器械商都是在一个脏乱、布满灰尘的地方放置打印设备。其实,现在已经有商业化运营的3D 打印实验室,来帮助这些企业打印出质量更高的原型机。
3D打印政策引领
2015年8月23日,中共中央政治局常委、国务院总理李克强主持国务院专题讲座,讨论加快发展先进制造与3D打印等问题。
2015年2月国家发展和改革委联合工信部发布的《国家增材制造产业发展推进计划(2015-2016年)》提出,到2016年,初步建立较为完善的增材制造产业体系,整体技术水平保持与国际同步,在航空航天等直接制造领域达到国际先进水平,在国际市场上占有较大的市场份额。增材制造产业销售收入实现快速增长,年均增长速度30%以上。进一步夯实技术基础,形成2-3家具有较强国际竞争力的增材制造企业。建立5-6家增材制造技术创新中心,完善扶持政策,形成较为完善的产业标准体系。
竭诚为您提供优质文档 /双击可除 3D 打印工艺分析 3d打印工艺分析 3d打印技术概述 3d 打印( 3dPrinting)是快速成型技术的一种,也称为增材制造技术 (additivemanufacturing,am),是一种以数字模型文件为基础,以材 料逐层累加的方式制造实体零件的技术。 3d 打印技术概念起源于 19 世纪,从上世纪 80 年代末正式应用到现在已经有 30 多年历史。 3d 打印通常是采用 3d 打印机来实现,常在模具制造、工业设计等领域 被用于制造模型,后逐渐用于一些产品的直接制造。 SLa快速成型技术 激光光固化技术( StereolithographyapparatusSLa)特定波长与强度的 激光聚焦到光固化材料表面使其逐层凝固叠加构成三维实体, 又称立 体光刻成型。该工艺最早由 charlesw.Hull于 1984年提出并获得美国 国家专利,是最早发展起来
3D打印公司在指导学员3D打印建模时必然会强调的就是分析3D打印模型结构,并根据实际情况做出合理的调整。
3D打印技术促进了产品个性化定制的普及与推广,使得每个人都可以设计3D几何模型,成为自己产品的设计师.他们由于缺乏一些设计经验与力学知识,会导致其设计结果直接3D打印后会存在一些结构问题,如强度问题、稳定性问题等.强度不足可能会使3D模型在打印、运输或日常使用过程中受到破坏,而稳定性问题则会导致3D模型无法正常地放置或悬挂,影响其日常使用功能.这种问题我们称其为结构分析问题,它的主要任务是识别3D模型中存在的强度或稳定性缺陷,并给出适当合理的弥补方案。
1、强度加固
针对强度问题,文献给出了一个自动检测并修正结构强度问题的系统方案,来创建一个新的3D模型,使其与原有模型保持尽可能相近的外形,同时提高其结构强度与整体性.该方案中,模型的结构强度问题通过一个轻量级的结构分析解算器来计算识别出.随后,根据所检测出的强度问题,文中给出三种方法对原模型进行修正:内部挖洞、局部加厚与加支撑。
结构强度问题与修正方法
文献中的方案有效地提高了模型的结构性能,避免了高强度应力区域的出现.但是该方案的最大局限在于:在结构强度检测时,系统需要先预设模型可能承受的外部荷载情况,并据此对模型显式地指定一种或几种捏握式外部荷载来进行结构强度计算.当然,同时还需考虑模型的重力荷载.显然,对很多模型来说,这种预设的荷载并不能很好地反映模型的真实荷载分布,因此其结构分析结果的真实性与可靠性也就不能很好地保证了。
2、最不利荷载
针对上面的问题,文献给出了一个更好的方案.该方案在预测或检测模型结构强度问题时,与上述明确指定或设定模型的荷载情况方法不同的是,它去寻找一种最不利荷载情况(Worst-Case),并据此识别出模型上最易破坏之处或最大变形区域,如图11所示。
Worst-Case计算实例
该方案的核心方法是模态分析(Modal Analysis),在结构分析研究领域,当一个物体以不同频率振动时,这种振动会导致物体的一些脆弱部位产生高应力或大变形.模态分析就是用来预测结构在振动状态下可能发生的破坏或变形的一种经典方法.
该方案的主要步骤如下:
(1)计算输入模型的各阶模态;
(2)对模型的每一阶模态,计算提取出相应的薄弱区域;
(3)对每一个薄弱区域,通过求解一系列的优化问题,计算出其相应的最不利荷载分布;
(4)用有限元方法计算在上述荷载分布作用下模型的应力,从而得到该薄弱区域的最大应力分布情况.
综合以上每一阶模态下模型的最不利荷载分布与最大应力分布情况,确定最终结果。
3D打印体验馆,内设整套所需的设备,配有专业的技术人员,展示有各种作品,通过技术人员的讲解及演示,可以让人很直观的明白3D打印技术能为他们做些什么。所以3D打印体验馆的意义就在于推进3D打印技术在普通大众间的传播和推广,它让科技服务于群众,贴近生活。
全球首家3D打印体验馆2012年11月份在日本开业,2012年12月份全国首家3D打印体验馆落户西安,标着着3D打印技术开始走向百姓生活。
山东省首家3D打印梦工场体验馆正在烟台筹建,除了北京、武汉、杭州、西安四城市以外,这是国内第五家3D打印梦工场体验馆。