最高分辨率可达3微米; 可完成截面尺寸5-230毫米,长度最大为1米,最大质量为100公斤的样品测试; 样品台可实现五轴联动; 超大空间防辐射铅壳; 可选最能微焦点X光源,225kV与320kV。
适合各种材料从宏观到微观试件的高精度内部结构表征,无损检测,缺陷识别,破坏机理研究等。
通过多维度扫描,形成一个三维数据体,根据不同需要,可以用数据还原成一层一层图像,通过图片展示出来,就是断层扫描。天津三英精密仪器股份有限公司(以下简称“公司”),致力于X射线三维显微镜、X射线在线检测...
一、功能介绍1.功能齐全测试故障安全、迅速、准确。仪器采用低压脉冲法和高压闪络法探测,可测试电缆的各种故障,尤其对电缆的闪络及高阻故障可无需烧穿而直接测试。如配备声测法定点仪,可准确测定故障的精确位置...
在岩土层原来所处的位置,基本保持的天然结构,天然含水量以及天然应力状态下,测定岩土的工程力学性质指标。
运用价值工程的方法技术,以最低的成本使引进的计算机断层扫描(CT)与核磁共振(NMR)既具有适当的价值,又实现了 CT 与 NMR 应具备的必要功能。并通过功能分析,避免了功能过剩造成成本过高而浪费经费,也避免了为追求节省成本造成功能不足而达不到医疗和科研的要求,由此说明,价值工程是事先控制成果韵有效方法。
CT是由柯尔马克(Cormack)和霍斯费尔德(Houns—field)发明的,因此,他们获得了1979年度的诺贝尔医学奖金。 CT的出现,是X—射线诊断学上的一次重大突破。自第一台 CT的原型设备于1971年9月安装后,就于1971年10月4日检查了第一个病人。1972年4月,在英国放射学家研究年会上宣告了EMI扫描机诞生。
随着电子计算机的发展和在医学领域的广泛应用,X--CT也目趋先进和完善,不同类型的 CT也应运而起,诸如单光子 CT(简称ECT)、正电子 CT(简称PCT)、超声CT(简称 U CT)和微波C T等。
计算机断层扫描(CT)能在一个横断解剖平面上,准确地探测各种不同组织间密度的微小差别,是观察骨关节及软组织病变的一种较理想的检查方式。在关节炎的诊断上,主要用于检查脊柱,特别是骶髂关节。CT优于传统X线检查之处在于其密度分辨率高,而且还能做轴位成像。由于CT的密度分辨率高,所以软组织、骨与关节都能显得很清楚。加上CT可以做轴位扫描,一些传统X线影像上分辨较困难的关节都能CT图像上"原形毕露"。如由于骶髂关节的关节面生来就倾斜和弯曲,同时还有其他组织之重叠,尽管大多数病例的骶髂关节用x线片已可能达到要求,但有时X线检查发现骶髂关节炎比较困难,则对有问题的病人就可做CT检查。
磁共振成像(MRI)是根据在强磁场中放射波和氢核的相互作用而获得的。磁共振一问世,很快就成为在对许多疾病诊断方面有用的成像工具,包括骨骼肌肉系统。肌肉骨骼系统最适于做磁共振成像,因为它的组织密度对比范围大。在骨、关节与软组织病变的诊断方面,磁共振成像由于具有多于CT数倍的成像参数和高度的软组织分辨率,使其对软组织的对比度明显高于CT。磁共振成像通过它多向平面成像的功能,应用高分辨的表面线圈可明显提高各关节部位的成像质量,使神经、肌腱、韧带、血管、软骨等其他影像检查所不能分辨的细微结果得以显示。磁共振成像在骨关节系统的不足之处是,对于骨与软组织病变定性诊断无特异性,成像速度慢,在检查过程中。病人自主或不自主的活动可引起运动伪影,影响诊断。
X线摄片、CT、磁共振成像可称为三驾马车,三者有机地结合,使当前影像学检查既扩大了检查范围,又提高了诊断水平。
计算机X线断层扫描成像原理
CT是用X射线束对人体某部一定厚度的层面进行扫描,由探测器接收透过该层面的X射线,转变为可见光后,由光电转换变为电信号,再经模拟/数字转换器(analog/digital converter)转为数字,输入计算机处理。图像形成的处理有如对选定层面分成若干个体积相同的长方体,称之为体素(voxel)。
扫描所得信息经计算而获得每个体素的X射线衰减系数或吸收系数,再排列成矩阵,即数字矩阵(digital matrix),数字矩阵可存贮于磁盘或光盘中。经数字/模拟转换器(digital/analog converter)把数字矩阵中的每个数字转为由黑到白不等灰度的小方块,即像素(pixel),并按矩阵排列,即构成CT图像。所以,CT图像是重建图像。每个体素的X射线吸收系数可以通过不同的数学方法算出。
CT的工作程序是这样的:它根据人体不同组织对X线的吸收与透过率的不同,应用灵敏度极高的仪器对人体进行测量,然后将测量所获取的数据输入电子计算机,电子计算机对数据进行处理后,就可摄下人体被检查部位的断面或立体的图像,发现体内任何部位的细小病变。