柚子型光子晶体光纤布拉格光栅理论及实验研究
利用有限元法对一种柚子型光子晶体光纤中的传输模式进行了模拟,得到了各传输模式的有效折射率和模场分布。结合耦合模理论和相关函数方法,对柚子型光子晶体光纤布拉格光栅反射谱进行了理论分析,解释了柚子型光纤光栅出现多个谐振峰的原因;数值分析了光纤纤芯直径和空气孔尺寸对光栅传输谱的影响。结果表明谐振峰波长随纤芯直径的增大向长波方向漂移,而随空气孔增大向短波方向移动,并且不同谐振模式的变化幅度不同;利用相位模板法写制了光子晶体光纤光栅,实验结果与理论分析能够很好地吻合。
光纤光栅用柚子型光子晶体光纤的设计与制备
本文采用堆拉法自主研制了一种新型的柚子型光子晶体光纤,并详细分析了光子晶体光纤的制作工艺。在预制棒制作方面,设计了独特的拼装工具辅助预制棒的拼装,提高了预制棒的一致性。在光纤拉制方面,设计了精度较高的微压控制系统来控制毛细管内压力的大小。经多次试验表明:当温度在1850~1900℃、压力在1500~2000pa时,可以得到结构相对均匀、损耗较小、强度较好的柚子型光子晶体光纤。对光纤性能进行了测试分析,光纤包层直径为130μm,涂敷层直径为250μm,在1550nm处模场直径为11.27μm,光纤损耗为3.5db/km,测试结果表明,研制的柚子型光子晶体光纤的几何参数和光学参数已达到工程化应用指标,为进一步开发高灵敏度的光纤光栅奠定了理论基础。
高双折射光子晶体光纤中均匀布拉格光栅的特性
研究了具有高双折射的光子晶体光纤(hbpcf)中均匀布拉格光栅(fbg)的光谱特性。利用紧凑的超格子模型,对光子晶体光纤的传输特性进行分析,研究正向传输和反向传输的模式之间的耦合规律,从而研究写入光子晶体光纤中的均匀布拉格光栅的特性。首先给出具有c6v对称性的零双折射光子晶体光纤中光纤布拉格光栅的布拉格波长λb随光纤结构参量的变化规律;然后分析一种高双折射光子晶体光纤中的光纤布拉格光栅的光谱特性,高双折射使两个不同偏振态的反射峰分开较大;最后分析了一种常用的双模双折射光子晶体光纤中光纤布拉格光栅的光谱特性,lp01模和lpe11模的两个偏振态对应的反射谱都由于高双折射而分开。
光子晶体光纤超连续谱光源
介绍该课题组近两年在光子晶体光纤超连续谱方面的主要研究成果,包括基于连续波泵浦研制全光纤化超连续谱源,利用级联一段高非线性正常色散光纤,通过光纤的受激拉曼散射效应实现超连续谱的平坦化;基于皮秒锁模光纤激光器实现全光纤化5w输出超连续谱源;拉制一段145m的锥形光子晶体光纤,利用自制的纳秒光纤激光器与锥形光子晶体光纤熔接,制备输出功率2.2w的宽带超连续谱源;利用自制的网状光子晶体光纤和全固态光子带隙光纤,分别研究亚微米薄壁上偏振相关的超连续谱产生,以及基于四波混频效应产生的超连续谱.
光子晶体光纤熔接损耗研究
基于有限元法分析了光子晶体光纤模场半径,为了提高计算速度,提出了一种工作波长为1.55μm时,光子晶体光纤模场半径的快速估算方法,进而实现光子晶体光纤熔接损耗的快速估算。分析表明,本文提出的方法能够准确快速的实现光子晶体光纤熔接损耗的估算。
光子晶体光纤陀螺技术
介绍了光纤陀螺在实际应用过程中的环境适应性问题,并从光子晶体光纤的结构特点出发,总结了光子晶体光纤的独特应用优势,指出将光子晶体光纤应用于光纤陀螺中可很好地解决温度、磁和辐射敏感等问题。通过实验研究,验证了实心保偏光子晶体光纤的损耗、模式特性,以及温度、磁场和核辐射对此种光纤的影响。同时,研究开发了它与传统保偏光纤的熔接对轴技术,熔接点损耗和偏振串音达到0.7db和-25db。在此基础上,研制出光子晶体光纤陀螺样机,陀螺零漂达到0.09(°)/h。研究和对比表明:在光纤陀螺中用光子晶体光纤代替传统的光纤,在减小温度、辐射、磁场的影响和进一步提高光纤陀螺性能方面具备很大的潜力。
双层芯色散补偿光子晶体光纤
为了抑制通信系统中脉冲的展宽,根据色散补偿理论,提出了一种由单一石英材料制成的双层芯光子晶体光纤(dccpcf).该光纤的色散值在1.55μm处可达到-6000ps/(nm·km).理论分析表明,在传输过程中内芯基模和外芯缺陷模以相位匹配波长为临界状态,在内芯与外芯之间相互交替传输,并在匹配波长处因模式发生强烈耦合而引起折射率产生大幅度波动.通过对结构参数d1、d2变化的情况下色散曲线的扰动情况进行分析,可为实际制备工作提供一定的理论指导.
光子晶体光纤及其在光纤陀螺中的应用
光子晶体光纤是一种包层由空气孔-石英沿轴向方向周期排列所构成的新型光纤。光子晶体光纤特殊的结构分布和特性,使其在降低光学噪声、陀螺尺寸、温度敏感性,提高陀螺精度和抗核辐射等方面,具有传统光纤光纤陀螺不可比拟的优越性。本文综述了光子晶体光纤的概念、在光纤陀螺方面的独特优势,以及其在光纤陀螺应用方面的研究进展和前景。
光纤布拉格光栅的解调方法
阐述了光纤布拉格光栅的几种解调方法及实验原理框图,并介绍了各种解调方法的优缺点。
光子晶体光纤在量子信息上的应用
先简单介绍光子晶体光纤相对于普通光纤的特点,然后重点阐述光子晶体光纤在量子信息上应用的优势。与其它方法,如基于非线性晶体自发参量下转换方法相比,利用光子晶体光纤能更有效地产生纠缠光子,并能与现有光纤传输系统良好兼容,从而表现出其在量子信息领域内的优越性及巨大的应用潜力。最后简要展望了光子晶体光纤在量子信息领域内的前景。
光子晶体光纤海外市场受宠
光子晶体光纤(pcf),是在1987年提出的光子晶体概念基础上,由1995年开始付诸实现的光纤。光子晶体光纤是一种新型光纤,其结构和导光机理都与普通光纤不同,呈现出许多在传统光纤中难以实现的特性,并因此受到广泛关注。在光子晶体光
大芯区的单模光子晶体光纤
采用毛细玻璃管拼接并拉丝的方法试制成功光子晶体光纤样品,它由石英纤芯和周围呈六角形分布的两圈气孔组成,气孔直径4μm,间距17μm,芯区直径30μm。理论模拟和光学实验均证实此光纤在6328nm以上的波长范围内为单模光纤
光纤布拉格光栅传感分析仪
提出了一种基于fpga与dsp平台的光纤布拉格光栅传感分析仪,将外界参量的变化转化为光纤布拉格光栅波长的偏移,通过数据采集、过滤杂波、信号波峰检测、高斯曲线拟合以及加权波长计算等关键步骤来实现波长解调技术,进而完成温度、应变、压力或位移等对象的在线测量,并且可以实现光纤线路故障分析与定位的功能。实验结果表明:该系统功耗低、线性度好、波长解调精度与分辨率较高。经过长期测试,系统软硬件运行稳定可靠。
基于级联长周期光纤光栅的光纤布拉格光栅解调系统
提出了一种基于级联长周期光纤光栅的光纤布拉格光栅解调系统。级联长周期光纤光栅作为边沿滤波器,利用它的一个线性区监测单个光纤布拉格光栅传感信号。该系统具有结构简单、价格低等优点,但易受光源抖动及系统其他不稳定因素等带来的系统噪声的影响。为消除系统噪声带来的不利影响,对该系统进行了改进。改进系统利用级联长周期光纤光栅的两个线性区同时监测两个光纤布拉格光栅传感信号。分别用原系统及其改进系统对温度进行监测,实验的温度测量范围为-70~-115°c。原系统的灵敏度为0.49mv/°c,温度分辨率为0.5°c;改进系统的灵敏度为0.86mv/°c,温度分辨率为0.3°c。实验结果表明改进系统能有效消除系统噪声,提高系统的精度。
双芯准晶格光子晶体光纤的色散特性
双芯准晶格光子晶体光纤的色散特性 胥长微 (黑龙江大学电子工程学院20115414) 摘要:设计了一种折射率引导型双芯准晶格光子晶体光纤。该光纤内、外纤芯中光波的耦合 效应,可在相位匹配波长附近产生相当高的负色数值。通过分析内包层孔径、纤芯孔径、外 包层孔径d,孔间距a,最终设计出一种能在1550nm低损耗窗口性能优越的色散补偿光纤。 此种光线适合在长距离高速光纤通信,系统中为常规单模光纤提供色散补偿。 关键词:光纤光学;光子晶体光纤;双芯;色散补偿 1引言 近年来,光子晶体光纤由于其独特的特性们的广泛关注,并成为国际学术界 研究的热点领域.由于灵活的结构使得它具有许多传统光纤不具备的特点,比 如高非线性,高双折和偏振保持,奇异色散特性,表面增强拉曼效应等.双芯光 纤是学系统中常用的耦合器件,然而传统双芯光纤在制作上比繁琐,光子晶体 光
光子晶体光纤的全光纤纤芯变形研究
利用有限差分光束传输法分析了全光纤纤芯变形光子晶体光纤中的模场分布以及能量损耗情况.实现了光子晶体光纤的选择性空气孔塌缩,制作了由小纤芯到大纤芯和圆形芯到矩形芯的纤芯变形光子晶体光纤,该光纤在波长1550nm下以小于0.05db的能量损耗实现了光斑的整形.实验结果与模拟结果有很好的一致性.
多芯光子晶体光纤高功率超连续谱光源
分析基于单芯光子晶体光纤的超连续谱光源在提升平均输出功率时所面临的问题,指出采用多芯光子晶体光纤作为超连续谱产生介质是一种实现高功率超连续谱产生的潜在方案。使用自制皮秒光纤激光器泵浦一段国产多芯光子晶体光纤,实现了光谱范围750~1700nm,平均功率42.3w的全光纤化高功率超连续谱输出。
混合纤芯光子晶体光纤的色散特性研究
利用有限差分法研究了一种混合纤芯光子晶体光纤的色散特性.在光纤端面的外围区域,由空气孔在石英材料中均布排列形成包层,在中心则由圆形高折射率材料与布居其近邻的数个辅助小空气孔共同构成纤芯.辅助空气小孔使光纤的色散陡增,比普通光纤色散参数高两个数量级以上.详细的数值研究表明,纤芯周围的一圈辅助空气小孔数目越多、越靠近圆形高折射率材料则色散参数就越大.当辅助小孔距离纤芯非常近时,模场面积大幅度增大,此时不仅能获得超大色散,而且能够使光子晶体光纤具有非常小的非线性效应.改变包层空气孔的大小对色散参数影响不明显.
极窄带宽的布拉格光纤光栅光谱特性研究
根据理想模展开下的耦合模方程,对光纤布拉格光栅的峰值反射率公式进行了数学推导,得到了布拉格光纤光栅的光谱反射率表达式。全面讨论了光栅周期、光纤栅长、光致折射率微扰最大值等参数与光纤光栅反射光谱的关系。仿真结果显示了固定参数下布拉格光栅的极限窄带宽,得到的反射率为1、带宽为0.02nm的窄带宽布拉格光栅,比现今分布式传感系统中使用的布拉格光栅的带宽窄1个数量级。这种布拉格光纤光栅用于分布式传感系统,可大大提高分布式传感系统中光源的带宽利用率,消除各信号间的相互串扰,提高传感光栅复用数目,降低解调系统成本。
利用自发四波混频测量光子晶体光纤色散
使用脉宽为1.6ps的脉冲光抽运0.6m长的光子晶体光纤,测量由光纤中自发四波混频过程所产生光子对的频谱,并利用所获得的相位匹配数据确定了待测光纤的色散。当抽运光的中心波长以1nm的步长,在1037~1047nm的范围内变化时,通过可调谐滤波器和单光子探测器测量光子晶体光纤产生的信号和闲频光子对的频谱,从而获得11组四波混频相位匹配数据。然后使用阶跃有效折射率模型对所获得的相位匹配数据进行拟合,得出待测光子晶体光纤的纤芯半径和包层空气比的有效值分别为0.949μm和29.52%,并在此基础上计算了光纤的色散及全频谱范围内的四波混频相位匹配曲线。实验结果显示,曲线预测值与实测值之间误差小于0.1%。
一种非对称双芯光子晶体光纤耦合器
通过分析非对称双芯光子晶体光纤耦合理论,提出了一种非对称双芯光子晶体光纤耦合器。理论分析显示,该耦合器的耦合比在一个较宽的波长范围内变化较小,具有波长响应平坦特性。通过有限元法模拟分析了该耦合器两芯间空气孔的尺寸以及光的偏振对其耦合特性的影响,结果表明,该非对称光子晶体光纤耦合器在1.3~1.8μm的波长范围内,其50%耦合比变化在±4%以内,具有较好的波长平坦耦合响应特性,适合光纤通信等领域对宽带耦合器的需求。
文辑推荐
知识推荐
百科推荐
职位:资深室内设计师
擅长专业:土建 安装 装饰 市政 园林