基于相似日搜索的空调短期负荷预测方法
针对新建楼宇空调系统做短期负荷预测工作时,缺少负荷预测所需的数据,难以实现空调系统优化节能的问题,提出一种基于相似日搜索的空调短期负荷预测方法———相似日搜索算法(SASD).算法首先通过分析空调负荷特性,定义日特征向量,构造日特征矩阵,缩小相似日的搜索范围;然后基于温度、湿度和风力3种天气影响因子,计算相似日的体感温度值;接着根据模糊思想选择正确的最终相似日判定因子,搜索得到最终相似日集合;最后通过判定选择面积中心法作为预测方法,实现工作日的负荷精确预测.仿真结果和实际预测效果表明:SASD可以精确预测空调负荷值,且在不同地区及不同时期具有一定的通用性.
常用空调负荷预测方法分析比较
准确预测空调负荷不仅对蓄能空调高效运行意义重大,而且也是新兴的冷热电三联产技术发挥技术优势的关键所在.针对同一幢建筑,分别采用了多元线性回归、季节性指数平滑法以及神经网络方法等三种典型性预测方法进行负荷预测研究,并对三种方法做了进一步改进.然后从预测精度、建模的复杂程度、工程上的可行性以及模型的其他特性(新建筑预测问题)等四个方面对负荷预测方法进行分析.结果表明:神经网络方法具有较高预测精度,而改进的季节性指数平滑法则具有较好的工程应用价值.
电力系统短期负荷预测方法研究
뗧솦쾵춳뛌웚뢺뫉풤닢랽램퇐뺿ퟷ헟ꎺ십뺲늨톧캻쫚폨떥캻ꎺ쯄뒨듳톧닎뾼컄쿗(63쳵ì1.얣뚫쿾.닜쫷뮪.헔샚뗧솦쾵춳뢺뫉풤닢벼쫵벰웤펦폃19882.쇵뎿鬒뗧솦쾵춳뢺뫉풤놨샭싛폫랽램19873.헅럼짺.췴뫨.몫.쯯쿾잿.헅헱폮.닜뷸믹폚욫ퟮ킡뛾돋믘맩럖컶뗄뛌웚뢺뫉풤닢[웚뾯싛컄æ-뗧췸벼쫵2003(3)4.perryshort-termloadforecastingusingmultipleregressionanalysis19995.apapalexopoulos.thesterburgaregression-basedapproachtoshort-termloadforecasting1990(04)6.헅짜뫍.믆뚫믝.뛅컄맣욽뮬쾵쫽폅뮯뗄
城市规划阶段建筑空调负荷预测方法
提出一种基于建筑空调负荷指标和气象参数的负荷因子法,分别计算建筑围护结构负荷、新风负荷、人员负荷、照明负荷及设备负荷,逐时叠加获得总的建筑空调负荷。利用正交试验对建筑空调负荷影响因素的显著性进行了分析,得出室外气象条件、室内设计参数及新风标准为建筑空调负荷预测的显著性影响因素。
四种空调负荷预测方法分析比较
在中央空调优化节能运行之前,准确预测空调负荷具有非常重要的意义。不同的中央空调工程选择不同的空调负荷预测方法可能会有不同的节能效果。介绍回归分析法、灰色预测法、指数平滑法、神经网络法等四种典型性预测方法,并对四种方法做一个大致的比较分析,得出各种方法的优点与缺陷。
基于改进极限学习机的短期电力负荷预测方法
为了提高电力系统短期负荷预测精度,提出一种基于改进极限学习机(melm)的短期电力负荷预测模型。引入基于结构风险最小化理论,并结合最小二乘向量机回归学习方法,以克服传统极限学习机(elm)在短期负荷预测中存在的过拟合问题。某地区用电负荷预测结果表明,改进模型的泛化性与预测精度均优于传统elm和os-elm模型,可为短期电力负荷预测提供有效依据,具有一定的实用性。
电力系统短期负荷预测方法的研究
郑州大学 硕士学位论文 电力系统短期负荷预测方法的研究 姓名:张德玲 申请学位级别:硕士 专业:电力系统及其自动化 指导教师:陈根永 20070515 电力系统短期负荷预测方法的研究 作者:张德玲 学位授予单位:郑州大学 本文链接:http://d.g.wanfangdata.com.cn/thesis_y1059836.aspx
电力系统短期负荷预测方法研究分析
电力系统短期负荷预测方法研究分析
基于相似日和灰色理论的短期电力负荷预测研究
针对短期电力负荷预测易受气象因素影响的特点,提出基于相似日和灰色理论的短期电力负荷预测模型;首先通过对日类型的判断得到相同日类型的负荷数据,然后对气象数据序列进行模糊化聚类处理,并结合预测日的气象数据,采用灰色关联方法进行关联分析,选取与预测日关联度高的负荷数据作为相似日负荷数据,采用灰色预测方法对相似日负荷数据进行短期电力负荷预测;仿真结果表明,选取了相似日之后的预测结果比未选取相似日的预测结果精度要高.
基于相似日和灰色理论的短期电力负荷预测研究
针对短期电力负荷预测易受气象因素影响的特点,提出基于相似日和灰色理论的短期电力负荷预测模型;首先通过对日类型的判断得到相同日类型的负荷数据,然后对气象数据序列进行模糊化聚类处理,并结合预测日的气象数据,采用灰色关联方法进行关联分析,选取与预测日关联度高的负荷数据作为相似日负荷数据,采用灰色预测方法对相似日负荷数据进行短期电力负荷预测;仿真结果表明,选取了相似日之后的预测结果比未选取相似日的预测结果精度要高。
基于气温变化的冬季城市燃气日负荷预测方法
基于气温变化的冬季城市燃气日负荷预测方法——文章结合实例分析了日平均气温对冬季城市燃气日负荷影响的规律,得到燃气日负荷的主要影响因素为气温所处温度区间、气温变化的幅度,而与气温所处时间区间和升降趋势无关。提出了基于气温变化的燃气日负荷预测方法...
基于混沌支持向量回归机的短期空调负荷预测
提出了1种基于混沌分析和支持向量回归机的短期空调负荷预测建模方法。通过研究实际空调负荷序列的混沌特性,确定其混沌特征参数并选取支持向量回归机进行预测。支持向量机建模过程使用粒子群算法进行参数寻优。仿真结果表明,空调负荷序列具有一定的混沌特性,使用混沌支持向量机方法的预测精度比单一支持向量机法预测结果eep指标降低了31.4%,预测精度有了明显提升。
基于灰色模型和神经网络组合的短期负荷预测方法
提出了一种基于灰色模型和神经网络组合的短期负荷预测方法。首先利用频域分解消除负荷序列的周期性,然后利用灰色模型计算负荷序列的历史拟合值和未来预测值,将其作为神经网络的输入。在历史数据中选择一天作为基准日,以该基准日的量为参照,以负荷的灰色模型拟合值相对基准日的变化量,以及温度变化量为bp神经网络的输入,实际负荷变化量为输出,训练神经网络并预测待预测日负荷的变化量,加上基准日负荷后得到预测负荷。该方法综合了灰色模型方法和神经网络方法的优点,仿真结果验证了方法的有效性。
基于人工神经网络与主分量分析的短期电力负荷预测方法
电力系统短期负荷预测是保证电力系统安全经济运行和实现电网科学管理及调度的重要依据,目前的电力系统短期负荷预测方法存在着一些不足。提出了基于人工神经网络与主分量分析的短期负荷预测方法,在试验中分别采用该方法和单一的人工神经网络对辽宁省某电网的短期负荷进行了预测,试验结果表明本文提出的方法与单一的人工神经网络预测法相比,不但减少了预测的时间,而且避免了过拟合现象,提高了预测精度。
基于混沌理论和小波变换的电力系统短期负荷预测方法
文章首先对目前电力系统负荷预报理论和方法进行了全面回顾和评述,重点介绍了混沌理论的发展及应用现状。结合混沌时间序列的分析方法,在对现在广泛应用于电力系统短期负荷预测的混沌方法研究的基础上,提出了将混沌预测技术与小波奇异性检测和消噪结合提高预测精度的方法。
基于相似度与神经网络的协同短期负荷预测模型
为了考虑除负荷本身外的其他因素对短期负荷的影响,提出了基于相似度与神经网络的短期协同预测模型。该模型首先通过计算负荷曲线的相似度对历史数据进行排序,然后选择与预测时刻相似度较相近的数据对未来时刻的负荷利用相似度进行预测,对于出现的误差,通过神经网络结合其他因素进行预测纠正。实验结果证明,该协同预测模型较之单纯的bp神经网络预测模型具有较高的预测精度。
基于偏最小二乘支持向量机的短期电力负荷预测方法研究
偏最小二乘(pls)运算降低电力负荷数据之间的相关性,最小二乘支持向量机(ls-svm)可以获得模型的全局最优预测效果,减少预测过程的运算量。介绍了pls和ls-svm的基本原理,给出了pls-ls-svm建立短期日电力负荷预测模型的过程,并用于某地区2008年的用电日负荷预测,预测的平均相对误差和最大相对误差分别为0.685%和8.8599%。与基于ar(1)模型的预测结果相比,pls-ls-svm模型更高的预测准确性可为短期电力负荷预测提供有效依据。
配电网中长期负荷预测方法综述
配电网中长期负荷预测方法综述
青浦工业园区热负荷预测方法
青浦工业园区热负荷预测方法——采用回归分析法、时间序列分析,与实际情况相结合,对青浦工业园区的热负荷进行预测,从而得出青浦工业园区的单位面积规划热负荷指标,为集中供热的规划与设计提供了基础资料。
基于混沌蚁群算法的电力短期负荷预测
通过对电力负荷变化规律和影响因素的分析,提出了一种新的短期电力负荷预测模型。首先利用混沌理论将杂乱无章的历史数据进行相空间重构,找出其中的潜在规律,并粗选预测参考点;然后利用蚁群优化算法,考虑距离因素和相点演化的相关性因素,对粗选的预测参考点作进一步精选,提高其质量;最后采用gm(1,1)灰色模型得到预测日的负荷数据。实际算例验证了提出的方法具有较好的预测精度。
电力系统短期负荷预测分析
电力系统短期负荷预测分析
电力系统短期负荷预测的静态分析
电力系统短期负荷预测的静态分析
电力系统短期负荷预测的研究
0 目录 中文摘要..............................................................1 英文摘要..............................................................2 1电力系统负荷预测综述...............................................3 1.1引言...........................................................3 1.2电力系统负荷预测的含义.........................................3 1.3电力系统负荷预测的意义.......................................
短期电力负荷预测器设计
短期电力负荷预测器设计 thedesignofshorttermpowerload prediction 毕业设计任务书 一、设计内容 结合人工神经网络模型的特点和学习方式,根据其学习方法,编写算法进行matlab仿 真,对仿真预测结果的精度进行分析。 二、基本要求 1.选择适合电力负荷预测的人工神经网络的模型。 2.利用matlab软件用于人工神经网络模型的仿真。 3.得到仿真结果,对电力负荷预测结果的精度进行分析。 三、主要技术指标 利用现有的人工神经网络模型,编写matlab程序,对人工神经网络进行训练,实现电 力负荷预测。 四、应收集的资料及参考文献 [1]韩力群.人工神经网络理论、设计及应用[m].北京:化学工业出版社 [2]周开利,康耀红.神经网络模型及其matlab仿真程序设计[m].北京:清华大学出版 社 [3]朱大奇.
基于径向基函数极限学习机的短期负荷预测
负荷预测对电网规划和售电市场调控具有重要意义。由于电力负荷与天气、日期、区域等多个因素密切相关,存在较强的不确定性和非线性特征,导致传统方法的负荷预测精度较低。为了提高负荷预测精度,提出基于正交投影径向基函数极限学习机(oprbf-elm)的短期电力负荷预测算法。该算法将elm的隐含层节点替换为径向基神经元,基于训练误差二范数最小化准则,采用正交投影计算输出权值向量,并在核函数的数量取值范围内索引获取使得训练集均方根误差(rmse)最小的预测负荷结果。算法预测过程中只需要设置网络的径向基神经元(rbf)个数,不需要调整输入权值及隐含层偏差,且正交投影能较好地消除输入样本特征之间的相关性,快速有效得到输出权值向量,从而提高负荷预测精度。以我国某省电动汽车用电领域的负荷数据作为标准样本进行仿真,仿真实验验证了该算法的可行性和有效性,与支持向量机(svm)和传统rbf-elm相比,该算法的预测精度高、泛化能力强,具有广泛的实用性。
文辑推荐
知识推荐
百科推荐
职位:钢筋施工员
擅长专业:土建 安装 装饰 市政 园林