基于支持向量机的机械故障诊断方法研究
企业在实际发展的过程中,机械设备作为原生的发展动力,对于自身的长期健康发展具有非常重要的影响。而落实到机械故障诊断方法研究中来,可以充分利用故障数据样本来对其诊断发展过程中出现的一些问题进行有效的把握,充分分析支持向量机的机械故障诊断方法的实质性内容,更好的加强分类故障的有效排除,并且提升诊断方法应用的有效性水平。因此,本文在研究的过程中,主要从支持向量机的相关原理出发,在对基本内容进行系统分析的同时,积极探索多故障分类器的相关建立与测试,从而更好的把握后续内容,推动我国社会经济的不断繁荣与进步。
基于支持向量机的旋转机械故障诊断研究
用转子振动试验台模拟了汽轮机典型故障,根据其频域变化特性,采用小波包分析对其建立频域能量特征向量。最后用svm进行故障状态识别,取得了良好的效果。
基于遗传算法的多尺度支持向量机及其在机械故障诊断中的应用
通过对支持向量机核函数的分析发现,当对样本的各个特征赋予不同大小的尺度参数时,可以避免冗余特征干扰分类,增强关键特征在分类中的作用,提高支持向量机分类器的学习和泛化能力。在此基础上,提出一种具有不同特征尺度参数的支持向量机(简称多尺度支持向量机),并通过遗传算法最小化loo(leave-one-out)泛化错误上限估计,根据各个特征的识别能力赋予其不同大小的尺度参数。将多尺度支持向量机用于轴承故障诊断,实验结果表明,与传统的单尺度参数支持向量机相比,多尺度支持向量机具有更好的泛化能力。对压缩机气阀的故障识别表明,尺度参数的大小直接反映了对应特征识别能力的大小,因此可以依据尺度参数的大小进行特征选择,保留关键特征,剔除冗余特征。
遗传算法和支持向量机在机械故障诊断中的应用研究
提出一种基于遗传算法和支持向量机的故障诊断方法,利用遗传算法对故障特征集和支持向量机的参数同时进行优化,然后把优化选择的故障特征输入支持向量机进行故障识别。既剔除了故障特征的冗余性、减少了计算量,又解决了支持向量机的参数难以选择等问题。诊断实例表明,该方法能利用较少的故障特征得到较高的诊断精度。
机械故障诊断论文
故障诊断技术 摘要:随着我国科技的发展,我国工业逐步向生产设备大型化、复杂 化、智能化、高速化和自动化方向发展,设备的复杂程度日益提高, 设备的维修技术也在广泛的发展那与进步,相比那些传统的故障诊断 技术难以满足复杂系统的故障诊断要求,因此智能故障诊断技术也得 到更广泛的应用。并且设备的诊断技术也得到了更广泛的发展,如何 把维修的成本降到最低,经济综合效益得到提高,故障诊断技术也越 来越重要。 关键词:工程机械;故障诊断;发展趋势 引言 机械故障诊断技术作为一门新兴的科学,自二十世纪六七十年代以来 已经取得了突飞猛进的发展,尤其是计算机技术的应用,使其达到了 智能化阶段,现在,机械故障诊断技术在工业生产中起着越来越重要 的作用,生产实践已经证明开展故障诊断与状态预测技术研究其重要 的现实意义。故障诊断技术虽然很难,但经过二十年的努力,我国自 己开发的故障
基于支持向量机的旋转机械振动故障诊断研究
本文主要针对旋转机械的故障诊断问题,设计了基于labview的旋转机械振动测试系统,该系统通过软件编程来实现振动信号的存储、分析及特征提取,并且提出了基于支持向量机的智能故障诊断方法,该方法将特征向量直接输入到支持向量机分类器中进行故障识别,结果表明支持向量机对于机械故障有较好的分类效果。
基于支持向量机的电力云故障诊断方法研究
电力云计算将虚拟化与分布式技术代替传统的服务器+san/nas信息计算模式,虚拟池对数据的整合与管理在提高资源利用率和降低建设成本的同时,由于电力云稳定和可靠工作的前提很大程度上依赖于良好的网络状态,由此也带来故障诊断更加复杂的新挑战.为了实现电力云网络故障的诊断,针对网络故障本身具有的小样本和非线性特征,采用支持向量机svm算法,在二分类无法解决多分类的基础上进行改进,选择了一对一svm,借助实验数据和matlab仿真结果验证了其可行性.
基于支持向量机的电力云故障诊断方法研究
电力云计算将虚拟化与分布式技术代替传统的服务器+san/nas信息计算模式,虚拟池对数据的整合与管理在提高资源利用率和降低建设成本的同时,由于电力云稳定和可靠工作的前提很大程度上依赖于良好的网络状态,由此也带来故障诊断更加复杂的新挑战.为了实现电力云网络故障的诊断,针对网络故障本身具有的小样本和非线性特征,采用支持向量机svm算法,在二分类无法解决多分类的基础上进行改进,选择了一对一svm,借助实验数据和matlab仿真结果验证了其可行性.
基于支持向量机的发动机故障诊断研究
故障样本的缺乏严重制约智能故障诊断的发展,本文提出支持向量机应用到发动机故障诊断中,该方法专门针对小样本集合设计,能够在小样本情况下获得较大的推广,而且模型简单,具体是将汽车在典型故障下尾气中各气体的体积分数作为训练样本。用处理过的样本和最优参数建立基于支持向量机的多元分类器模型,进行故障类别诊断。经过libsvm工具箱进行仿真,结果表明经优化后的支持向量机对于小样本故障诊断有很高的准确率。
案例推理在印刷机械故障诊断中的应用
案例推理在印刷机械故障诊断中的应用 作者:贺小辉,陈云,韩彦岭,应志雄 作者单位:上海大学,cims&robot中心,上海,200072 刊名:机械工程师 英文刊名:mechanicalengineer 年,卷(期):2004,""(9) 被引用次数:4次 参考文献(3条) 1.冯焕玉.张子林胶印疑难故障判断与排除1994 2.陆汝铃世纪之交的知识工程与知识科学2001 3.phiipwgrant.paulm.harris.laurenceg.moseleyfaultdiagnosisforindustrialprintersusing case-lasedreasoning1996(02) 相似文献(1条) 1.期刊论文贺小辉.陈云.韩彦岭.应志雄案例推理在印刷机械故障诊断中的应用-中国包装2004
基于支持向量机的设备故障诊断研究
支持向量机作为基于统计学理论的机器学习方法,在人工智能识别方面的研究起到了重要的作用。本文将支持向量机智能识别方法引入到机械设备的故障诊断当中,并对支持向量机模型起到关键作用的惩罚因子c和核参数g采用了交叉验证的方法进行最优化计算。建立了基于优化的支持向量机的机械设备故障诊断模型,并且进行了相关实验,实验表明,采用本文介绍的基于支持向量机的故障诊断方法可有效识别出机械设备的故障类型,对机械设备的故障诊断提供了有效的诊断方法。
基于遗传算法优化支持向量机的电梯故障诊断
针对电梯的几种常见故障,论文采用了最小二乘支持向量机(ls-svm)诊断的方法。采集电梯几种故障状态下的振动信号,用最优小波包的理论分析计算故障振动信号的能量分布,将其能量分布与时域指标相结合,以构造故障特征向量,作为ls-svm的输入来识别电梯的故障原因,并采用遗传算法优化ls-svm的相关参数。通过对电梯六种常见故障的诊断结果表明,基于遗传算法优化的最小二乘支持向量机用于电梯故障诊断是一种有效的方法。
基于支持向量机的水电机组故障诊断研究
针对水电机组故障信息缺乏、故障识别困难等问题,提出基于支持向量机的水电机组故障诊断模型.并针对实测水电机组故障数据,分析支持向量机水电机组故障诊断模型和常用的神经网络故障诊断模型等理论在水电机组故障诊断中的优劣.研究表明,支持向量机理论在小样本情况下比神经网络具有更强的诊断能力.
基于支持向量机的水电机组故障诊断
针对水电机组故障样本少的问题,将支持向量机引入水电机组故障诊断研究,提出一种结合小波频带分解与最小二乘支持向量机的水电机组故障诊断模型。基于机械设备\"能量-故障\"映射关系,运用小波分解提取机组振动信号各频带能量特征值,然后将能量特征值输入到多分类的支持向量机,实现对机组不同故障类型的识别。通过实验信号分析,表明将小波能量提取与支持向量机结合进行水电机组故障诊断是可行有效的,并具有较高的故障分辨能力,为水电机组故障诊断提供了新的方法和思路。
基于支持向量机在设备故障诊断方面的应用研究
在现代化生产中,随着机电设备的不断增多,在运行过程中难免会发生故障,这就要求需要及时对出现故障的设备进行诊断,以保证设备的正常运行。然而,随着故障诊断技术的发展,支持向量机在设备故障诊断中得到了广泛应用,其是一种基于数据学习,以传统统计学理论的方法,可以有效减少算法设计的随意性。
基于人工神经网络的工业机械故障诊断优化方法研究
针对当前工业机械设备运行数据庞大,设备故障诊断复杂等问题,采用三层式bp神经网络,结合主元分析法,研究用于工业机械设备故障诊断的bp神经网络的优化方法,来对设备故障原因进行分类,并在此基础上探讨bp神经网络对于不同场景的应用,从而提高bp神经网络的应用价值。
基于支持向量机在设备故障诊断方面的应用研究
在现代化生产中,随着机电设备的不断增多,在运行过程中难免会发生故障,这就要求需要及时对出现故障的设备进行诊断,以保证设备的正常运行。然而,随着故障诊断技术的发展,支持向量机在设备故障诊断中得到了广泛应用,其是一种基于数据学习,以传统统计学理论的方法,可以有效减少算法设计的随意性。
基于同步优化的支持向量机模拟电路故障诊断方法研究
支持向量机模拟电路故障诊断涉及到特征提取、特征选择和支持向量机的参数优化等问题,它们都对诊断结果有直接的影响。针对这一问题,提出了一种基于改进的离散粒子群算法的同步优化方法。该算法采用非线性惯性权重和遗传操作相结合的方法,提高了粒子群前期迭代的探索能力和后期迭代的开发能力,同时降低了粒子群陷入局部最优的风险。通过模拟电路的仿真实验,验证了同步优化方法和改进的离散粒子群算法的有效性。
基于支持向量机的核探测器电路故障诊断方法研究
核数据的获取和处理包括探测器将核粒子能量通过模拟放大器转换成与之对应的脉冲幅度;再由模拟-数字转换器(adc)或时间-数字变换器(tdc)将探测器给出的脉冲幅度(或时间间隔)变换成离散的核信息数据。本文根据其离散数据提取特征值并进行模式识别,尝试基于支持向量机的模拟电路故障定位,并通过软件仿真对此方法进行检验。通过具体成形放大模拟电路仿真实验,验证了支持向量机对模拟电路故障定位的有效性。
基于小波变换和支持向量机的模拟电路故障诊断方法研究
提出一种利用小波变换提取模拟电路故障特征和基于支持向量机状态分类的模拟电路故障自动识别和诊断方法。首先讨论小波变换的基本原理和支持向量机原理及其多分类算法,同时着重研究支持向量机的一种改进型一对多故障分类算法,然后实现在小波变换上,采用分布式多svm分类器识别单相桥式整流模拟电路的故障。实验证明,该方法能准确有效地对模拟电路故障进行识别和诊断。
工程机械故障诊断专家系统设计与实现
工程机械故障诊断专家系统设计与实现
基于粒子群支持向量机的轨道电路故障诊断
支持向量机(svm)是-种解决小样本分类问题的最佳理论算法,它的核函数的参数选择非常重要,直接影响着故障诊断的准确率.本文将粒子群算法(pso)用于支持向量机的参数优化,提出基于粒子群支持向量机的故障诊断模型,并将其运用于轨道电路中.通过对比matlab仿真结果得出:经过粒子群寻优得到的参数比随机选取的参数更优,所建立的pso-svm模型的故障诊断准确率高于普通的svm模型.
基于支持向量机的区间轨道电路故障诊断研究
支持向量机(svm)算法以统计学习理论为基础,依据结构风险最小化的原则,且在有效的特征信息有效的情况下,能够对数据中隐藏的有效信息进行挖掘。故本文用支持向量机对zpw-2000轨道电路进行故障诊断研究,且用遗传算法和粒子群算法对其中的参数进行优化,进而实现故障类别的判断。对提高铁路信号维护的智能化水平有重大意义。
基于支持向量机的模拟电路故障诊断研究
针对模拟电路的故障诊断问题,详细介绍了支持向量机算法,由于它在非线性映射、小样本学习方面的独特优势,故将它引用到模拟电路的故障诊断过程中。并提出了一种基于支持向量机的诊断方法,该算法能够对被测电路的故障进行有效并且精确地分类。以折线逼近平方曲线的近似测量电路为例,设计了基于支持向量机的模拟电路故障诊断系统。以实际测试数据作为训练样本进行学习训练后,对其它实际测量数据进行诊断,其结果正确,验证了算法的有效性。
基于粒子群优化支持向量机的电梯故障诊断
电梯故障时,具有故障特征提取困难和故障类型识别率低的问题。因此,拟提取其振动信号并进行分析,找到故障特征。然而,鉴于其振动信号为非平稳、非高斯且背景噪声较大的信号,给有效辨识造成很大困难,所以,提出应用最优小波包分解和最小二乘支持向量机相结合进行电梯智能故障诊断的方法。借助最优小波包理论,首先提取电梯故障振动信号的能量分布;然后将其能量分布与时域指标相结合,构造故障特征向量;最后,将故障特征向量作为粒子群算法优化最小二乘支持向量机的输入对电梯故障类型进行识别。仿真结果表明,最优小波包理论与最小二乘支持向量机相结合的故障诊断技术发挥了两者的优势,证明了该方法的有效性和实用性。
文辑推荐
知识推荐
百科推荐
职位:夹具造价工程师
擅长专业:土建 安装 装饰 市政 园林