一种连续输出半导体激光器群并联驱动电源的研制
针对大功率半导体激光器价格较为昂贵的现状,我们用一个驱动电源同时驱动若干个激光二极管,并使其各自能够独立工作,再通过光纤合束器将这若干束激光耦合输出,从而得到较大的功率和性价比,特别是对大功率激光二极管更能显著地提高性价比。文章分析了半导体激光器的工作原理和使用要求。提出了对单个半导体激光器驱动电源的基本要求。并根据对半导体激光器驱动电源的基本要求,结合系统指标的要求,确定驱动电源的主体电路结构,对部分电路作了分析。从实现电流精度角度考虑,设计并实现高精度、高稳定性的控制系统及外围电路。从半导体激光器损坏机理角度考虑,设计并实现高效、可靠的保护电路及抗干扰电路。
半导体激光器输出特性的影响因素
半导体激光器输出特性的影响因素 半导体激光器是一类非常重要的激光器,在光通信、光存储等很多领域都有广泛的应 用。下面我将探讨半导体激光器的波长、光谱、光功率、激光束的空间分布等四个方面的 输出特性,并分析影响这些输出特性的主要因素。 1.波长 半导体激光器的发射波长是由导带的电子跃迁到价带时所释放出的能量决定的,这个能 量近似等于禁带宽度eg(ev)。 hf=eg f(hz)和λ(μm)分别为发射光的频率和波长 且c=3×108m/s,h=6.628×10-34j·s,lev=1.60×10-19j 得 决定半导体激光器输出光波长的主要因素是半导体材料和温度。 不同半导体材料有不同的禁带宽度eg,因而有不同的发射波长λ:gaalas-gaas材料 适用于0.85μm波段,ingaasp-inp材料适用于1.3~1.55μm波段。
光纤传感器用半导体激光器光频调制驱动电源
为了实现基于光频调制相位生成载波解调的干涉型光纤传感系统,需要对激光光源的频率进行调制。首先,文章根据直接电流调制原理设计并开发了一种半导体激光器光频调制驱动电源,主要由精密基准电压源、内部信号发生器、加法器、恒流源(电压电流转换、电流放大和电压负反馈)、慢启动电路、纹波抑制电路和过流保护电路等基本单元组成。接着,建立了测试调制特性和验证光频调制的实验系统对半导体激光器光频调制驱动电源进行实验验证。实验结果表明,文章设计并开发的半导体激光器光频调制驱动电源不仅能调制正弦波和三角波等波形,而且驱动电流连续可调,非线性失真系数仅为0.009%。同时还具有结构简单、驱动电流稳定、防浪涌击穿、防过载损坏和防静电击穿等优点。文章的研究工作为基于pgc解调的干涉型光纤传感系统的工程化开发与应用奠定了基础。
多芯片半导体激光器光纤耦合设计
应用zemax光学设计软件模拟了一种多芯片半导体激光器光纤耦合模块,将12支808nm单芯片半导体激光器输出光束耦合进数值孔径0.22、纤芯直径105μm的光纤中,每支半导体激光器功率10w,光纤输出端面功率达到116.84w,光纤耦合效率达到97.36%,亮度达到8.88mw/(cm2·sr)。通过zemax和origin软件分析了光纤对接出现误差以及单芯片半导体激光器安装出现误差时对光纤耦合效率的影响,得出误差对光纤耦合效率影响的严重程度从大到小分别为垂轴误差、轴向误差、角向误差。
光纤光栅外腔半导体激光器的输出谱特性
采用射线法,计算增益随波长的变化,推导出光纤光栅外腔半导体激光器(fgesl)输出谱的表达式.结合载流子速率方程,对外腔半导体激光器输出谱的精细结构进行了数值模拟研究.结果表明:光纤光栅外腔的输出谱在反射带宽内呈现出多峰结构,随着前端面反射率减小和耦合效率增加,输出谱相应地变得比较稳定.
半导体激光器P-I特性测试
实验一半导体激光器p-i特性测试实验 一、实验目的 1.学习半导体激光器发光原理和光纤通信中激光光源工作原理 2.了解半导体激光器平均输出光功率与注入驱动电流的关系 3.掌握半导体激光器p(平均发送光功率)-i(注入电流)曲线的测试方法 二、实验仪器 1.zy12ofcom13bg型光纤通信原理实验箱1台 2.光功率计1台 3.fc/pc-fc/pc单模光跳线1根 4.万用表1台 5.连接导线20根 三、实验原理 半导体激光二极管(ld)或简称半导体激光器,它通过受激辐射发光,(处于高 能级e2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级 e1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率 相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。)是一种阈 值器件。由于受激辐射与
激光二极管群并联驱动电源的研制
介绍一种单片机控制的激光二极管群并联驱动电源,系统包括可调恒流源、过流保护电路、光功率采样与放大电路等部分,结合硬件及软件,实现了激光二极管群的可靠保护与光功率的稳定、准确输出,并且使这若干个激光管互不影响。
炬光科技推出连续阵列半导体激光器光纤耦合模块(FC)系列
2010年1月,西安炬光科技有限公司在国内首次推出连续半导体激光器光纤耦合模块fc(fibercoupled)系列产品。这是一款融合了炬光科技多项创
分布反馈量子级联激光器脉冲驱动电源的研制
为了满足中红外一氧化碳检测中分布反馈量子级联激光器的驱动要求,设计并实现了一种专用型脉冲驱动电源.首先,研制了高稳定的供电系统和完善的保护系统,显著提高了驱动脉冲的质量并保证了电源工作的可靠性;其次,依据"多级隔离"的思想设计了电源各功能电路,很大程度上提高了驱动电源的抗干扰能力;同时,将深度电压负反馈与比例-积分-微分控制算法相结合,有效提高了输出电流的稳定度.利用该驱动电源对中科院半导体所研制的波长为4.76μm的分布反馈量子级联激光器做了驱动测试.实验结果表明,在长时间(200h)运行中,系统驱动电流的稳定度为2.5×10-5,线性度为0.004%,满足分布反馈量子级联激光器的驱动要求,为中红外一氧化碳的可靠检测提供了保障.
基于Zemax半导体激光器与单模光纤耦合系统设计
基于光学设计软件zemax纯非序列,设计了一种半导体激光器与单模光纤的高耦合效率系统.设计过程中考虑了激光器发光面的大小,而不是将其看做点光源;在现有的非球面镜透镜单模光纤耦合系统基础上进行了改进,通过百万次光线追迹,测得所设计系统的耦合效率大于54%.用zemax和origin软件分析了单模光纤与耦合系统对接出现误差情况下对耦合效率的影响,分别给出了各种对接误差情况下的耦合效率变化曲线,为耦合系统的工程安装提供理论分析和技术支持.
半导体激光器与单模光纤对准平台运动误差分析
为了实现半导体激光器与单模光纤快速精确耦合对准,需分析对准平台的扰动特性.首先,基于半导体激光器与单模光纤的对准误差,构建了五维对准平台.然后,针对半导体激光器与单模光纤对准过程中运动误差的随机性问题,运用多体系统理论,建立了对准平台的拓扑结构模型,并分析了其运动过程中的位姿,得到了半导体激光器末端点运动误差模型.最后,利用montecarlo方法,结合该运动误差模型,对运动误差进行了概率分析.结果表明:在不考虑静止误差的情况下,半导体激光器末端点的位置在x、y和z三个方向的运动误差近似为中间高两边低的对称分布.此分析可为对准过程中运动误差补偿提供数据参考.
半导体激光器温度控制模块的设计
设计一种用于半导体激光器(sl)工作温度调节控制模块,通过采用双温度测试、内嵌8位微控制器(mcu)、256级电流输出等,实现了智能化、小型化,具有温度稳定性高、成本低等特点。基于系统结构框图对各部分组成、工作原理和软件实现进行了分析。测试结果表明本模块也适用于其它类型半导体器件的工作温度控制。
半导体激光器与单模光纤的球透镜耦合分析
建立了半导体激光器与单模光纤通过球透镜耦合的光传输模型,对双异质结激光器光束特性进行了分析。基于huygens-fresnel原理计算了激光光束远场发散角以及光束束腰半径。运用高斯光束与单模光纤耦合理论以及abcd矩阵理论进行了激光器与单模光纤的球透镜耦合效率分析,给出了最优化的耦合封装工艺参数,以及各个影响耦合效率的参数容忍度,对半导体激光器与单模光纤的球透镜耦合封装具有重要意义。
大功率半导体激光器光纤耦合模块的温度控制
随着光纤激光器技术的飞速发展,作为光纤激光器泵浦源的高功率,高亮度的大功率半导体激光器光纤耦合模块越来越受到人们的关注。提高光纤耦合效率和光纤耦合模块的可靠性,有效控制大功率半导体激光器光纤耦合模块的温度成为人们关注的重点。
高功率半导体激光器光纤耦合模块的可靠性研究
文章从高功率半导体激光器光纤耦合模块的组成和各个部分的机理出发,详细分析了影响其可靠性的因素,主要有以下三个方面:激光器自身的因素、耦合封装工艺和电学因素。通过优化原有工艺与采用新技术,提高了模块的可靠性,拓宽了其应用领域。
一种实现半导体激光器和多模光纤耦合的实用技术
文中提出了一种实现半导体激光器和多模光纤耦合的实用化方法。用一段直径为600μm的裸石英光纤代替柱透镜对半导体激光器输出光束进行准直整形;用半球端光纤对光束进行聚焦后直接实现和光纤耦合,来代替聚焦透镜和光纤耦合的环节。研究表明:采用该方法耦合效率在80.0%左右,同时最大程度解决了使用柱透镜和聚焦透镜的组合透镜耦合系统时存在的调试与封装困难的问题,且工艺稳定,因而有着广泛的应用前景。
双光纤光栅外腔半导体激光器相干失效研究
根据双光纤bragg光栅(fbg)外腔半导体激光器相干失效的物理过程,运用速率方程和双fbg耦合模理论,分析了双fbg外腔半导体激光器相干失效产生和控制的条件,提出了实现和控制双fbg外腔半导体激光器相干失效多模稳定工作的方法.双fbg外腔半导体激光器在相干失效下具有多模的稳定工作状态,相干失效长度缩短,相干失效长度内光谱稳定.实验测量结果表明,外腔反射率为3%时,从非相干失效状态到相干失效状态,半峰值全宽度从0.5nm突然展宽到0.9nm.在相干失效状态下,功率稳定,边模抑制比大于45db,在0℃~c一70℃工作温度范围内峰值波长漂移小于0.5nm,最小相干失效长度小于0.5m.双fbg外腔半导体激光器相干失效的应用对提高光纤放大器和光纤激光器的性能具有重要意义.
光纤通信实验--半导体激光器P-I特性测试实验
光纤通信实验报告 1 半导体激光器p-i特性测试实验 实验室名称:光纤通信实验室实验日期:2011年04月26日 学院 信息科学与工 程学院 专业、班级 电子信息工 程0802 姓名黄俊 实验名称半导体激光器p-i特性测试实验 指导 教师 王玮 教师评语 教师签名: 年月日 实验目的: ⒈学习半导体激光器发光原理和光纤通信中激光光源工作原理 ⒉了解半导体激光器平均输出光功率与注入驱动电流的关系 ⒊掌握半导体激光器p(平均发送光功率)-i(注入电流)曲线的测试方法 实验内容: ⒈测量半导体激光器输出功率和注入电流,并画出p-i关系曲线。 ⒉根据p-i特性曲线,找出半导体激光器阈值电流。 实验器材: ⒈光纤通信原理实验箱1台 ⒉光功率计1台 ⒊fc/pc-fc/pc单模光跳线1根 ⒋万用表1台 ⒌
高功率半导体激光器列阵光纤耦合模块
根据大功率半导体激光二极管列阵与光纤列阵耦合方式,分别从理论和实验两方面讨论、分析了大功率半导体激光二极管列阵与微球透镜光纤列阵耦合。将19根芯径均为200μm的光纤的端面分别熔融拉锥成具有相同直径的微球透镜,利用v形槽精密排列,排列周期等于激光二极管列阵各发光单元的周期。将微球透镜光纤列阵直接对准半导体激光二极管列阵的19个发光单元,精密调节两者之间的距离,使耦合输出功率达到最大。半导体激光二极管列阵与微球透镜光纤列阵直接耦合后,不仅从各个方向同时压缩了激光束的发散角,有效地实现了对激光束的整形、压缩,而且实现30w的高输出功率,最大耦合效率大于80%,光纤的数值孔径为0.16。
高功率半导体激光器光纤耦合模块
光纤耦合输出的高功率激光二极管模块具有体积小、光束质量好、亮度高等特点,在泵浦光纤激光器、材料处理、医疗仪器等领域都获得了广泛的应用。为了进一步提高光纤耦合激光二极管模块的输出功率,提出了基于多只激光二极管串联的光纤耦合方法。这种方法具有耦合效率高、光学元件加工简单等特点。利用两组反射镜,将多只高功率激光二极管输出光束经准直、复合、聚焦,耦合进光纤输出,根据激光二极管和光纤的相关参数设计了聚焦透镜。利用特殊加工的aln材料作为过渡热沉解决了激光二极管的导热和相互之间的绝缘问题。采用这种方法将4只输出波长为980nm的高功率激光二极管输出光束耦合进数值孔径0.22、芯径100μm的多模光纤中,当工作电流为4.0a时,光纤连续输出功率为11.6w,耦合效率大于79%。
808nm大功率半导体激光器光纤耦合模块系统
根据808nm大功率半导体激光列阵(lda)的远场光场的分布特点,利用多模光纤柱透镜和光束转换装置对808nm半导体激光列阵的发散角进行压缩整形,通过聚焦准直透镜将激光束耦合进入芯径为400μm的光纤,实现了30w的功率输出,其中最大耦合效率大于80%,光纤的数值孔径(na)为0.22。通过分析其输出光斑和输出曲线,表明lda与光纤耦合系统不仅从各个方向同时压缩了激光束的发散角,有效地实现了对激光束的整形、压缩,而且性能稳定,可靠实用。
880nm半导体激光器列阵及光纤耦合模块
为了使半导体激光泵浦nd∶yvo4固体激光器能获得大功率、高光束质量、线偏振的激光输出,利用pics3d软件设计了ingaas/gaas应变量子阱结构,制作了发射波长为880nm的大功率半导体激光器列阵。该激光器列阵激射区单元宽为100μm,周期为200μm,填充因子为50%,激光器列阵cs封装模块室温连续输出功率达60.8w,光谱半高全宽(fwhm)为2.4nm。为进一步改善大功率半导体激光器列阵的光束质量,增加半导体激光端面泵浦功率密度,采用阶梯反射镜组对880nm大功率半导体激光器列阵进行了光束整形,利用阶梯镜金属表面反射率受近红外波长变化影响小的特点,研制出高稳定性、大功率光纤耦合模块。模块输出功率为44.9w,光-光耦合效率达73.8%,尾纤芯径φ为400μm,数值孔径(na)为0.22。
高效率半导体激光器光纤耦合模块
随着半导体激光光源在激光加工领域的应用不断扩展,以激光二极管阵列制成的光纤耦合模块由于存在耦合效率低的缺点,已不能满足激光加工低成本的需求,因此研制高耦合效率的半导体激光器光纤耦合模块变得十分重要。本文将8只波长为808nm、输出功率为5w的单管半导体激光器通过合束技术耦合进光纤,制备了一种高效率的半导体激光器光纤耦合模块。光纤芯径为200μm、数值孔径(na)为0.22,光纤输出功率为33.2w,耦合效率超过83%,这种高效率半导体激光器光纤耦合模块,可用于激光打标、塑料加工等领域。
33W半导体激光器列阵光纤耦合模块
利用光纤柱透镜和光束转换装置压缩半导体激光器列阵(lda)的发散角,然后通过聚焦透镜将激光束耦合入芯径为400μm的微球透镜光纤。lda与光纤耦合输出后,实现33w的高出纤功率,最高耦合效率大于80%,光纤的数值孔径(na)为0.22。
文辑推荐
知识推荐
百科推荐
职位:普通监理工程师
擅长专业:土建 安装 装饰 市政 园林