基于计量经济-灰色理论的多变量电力负荷预测方法
为了充分考虑城市发展变化的多元性与预测电力负荷过程中的各种影响变量,提高电网规划中电力负荷的预测精度,本文提出了基于计量经济-灰色理论的多变量电力负荷预测方法.该方法首先通过电力负荷与各变量之间的相关性分析,确定预测过程中与电力负荷强度相关的各影响变量.然后利用统计学中的计量经济理论,找到彼此之间的联系,建立电力负荷与各变量之间的数学预测模型.最后再利用灰色理论对目标年各变量的值进行预测,以解决数据匮乏、波动的不确定性所带来的难题,并带入数学模型,完成预测.工程实例验证了该方法是正确和有效的.
基于灰色理论的电力负荷预测
电力负荷预测是电力部门规划的基础,因此运用灰色系统理论对电力负荷预测进行分析,首先对灰色系统理论进行阐述,再通过实际案例进行验证,最后得到一个较为精确的数值,为电力部门提供了一种行之有效的预测方法。
基于相似日和灰色理论的短期电力负荷预测研究
针对短期电力负荷预测易受气象因素影响的特点,提出基于相似日和灰色理论的短期电力负荷预测模型;首先通过对日类型的判断得到相同日类型的负荷数据,然后对气象数据序列进行模糊化聚类处理,并结合预测日的气象数据,采用灰色关联方法进行关联分析,选取与预测日关联度高的负荷数据作为相似日负荷数据,采用灰色预测方法对相似日负荷数据进行短期电力负荷预测;仿真结果表明,选取了相似日之后的预测结果比未选取相似日的预测结果精度要高.
基于相似日和灰色理论的短期电力负荷预测研究
针对短期电力负荷预测易受气象因素影响的特点,提出基于相似日和灰色理论的短期电力负荷预测模型;首先通过对日类型的判断得到相同日类型的负荷数据,然后对气象数据序列进行模糊化聚类处理,并结合预测日的气象数据,采用灰色关联方法进行关联分析,选取与预测日关联度高的负荷数据作为相似日负荷数据,采用灰色预测方法对相似日负荷数据进行短期电力负荷预测;仿真结果表明,选取了相似日之后的预测结果比未选取相似日的预测结果精度要高。
一例基于灰色模型的电力负荷预测方法的应用
以忻州市1994~2004年用电量数据为例介绍了灰色预测技术在电力系统中的应用,并与忻州市1994年至2004年工农业生产总值(不变价)和同期用电量数据建立的一元线性回归模型预测结果进行了对比分析,进一步说明了灰色模型预测具有较高的置信度和应用价值。
灰色预测方法在电力负荷中的研究应用
电力负荷预测为地区或电网的电力发展速度、电力建设规模、电力工业布局、能源资源平衡、地区或电网间的电力余缺调剂,以及地区或电网资金和人力资源的需求与平衡提供可靠的依据。针对电力负荷受多重因素影响,变化趋势复杂的问题,本文提出了灰色模型对电力负荷进行预测,并结合算法进行实例论证。实例结果表明该方法的可行性和有效性,预测精度也得到改善,为准确预测长期电力负荷提供了一种简便可行的分析预测方法。
基于灰色理论GM(1,1)模型的中长期电力负荷预测研究
以灰色理论gm(1,1)模型为基础,建立中长期电力负荷预测模型.该模型所需要的数据量小且样本分布不需要有规律性,以吉林省2001~2011年年用电统计量作为样本对模型进行训练与预测分析,仿真实验结果表明:所建模型预测准确率较高,对未来电力系统规划有积极的指导作用.
灰色预测模型在电力负荷预测中的应用
方法的选择对电力负荷预测结果至关重要,本文通过对x(1)(1)增加干扰因素β,实现对初始值的优化,较已有研究文献使用x(1)(n)+β方法更加便于理解,保持运算前后一致,同时,改进背景值的设置。通过实例验证,此方法可以在负荷预测上得到很好的应用,提高预测精度。
组合灰色预测模型在电力负荷预测中的应用
灰色系统是部分信息已知、部分信息未知的系统。灰色系统把一般系统理论、信息控制的观点和方法延伸到社会、经济等广义系统,灰色系统理论能更准确地描述社会经济系统的状态和行为。研究基于灰色系统理论的灰色预测模型,对社会经济系统预测具有重要的意义。由于用电负荷增长情况受经济发展、产业机构、气候、居民收入水平等诸多因素的影响,其中有一些因素是确定的;而另外一些因素是不确定的,故可以把它看作一个灰色系统。
基于灰色系统理论的电力负荷预测
在灰色系统理论的基础上,采用灰色关联算法,对影响电力负荷的因素进行分析,选择更能反映电力负荷变化趋势的因素。并采用灰色建模方法,进行电力日特征负荷预测。
基于灰色系统理论的电力负荷预测研究
利用灰色系统理论建立电力负荷预测模型,并将其加以改进,应用结果表明改进的灰色预测模型具备较高的精确性和可靠性。
基于改进极限学习机的短期电力负荷预测方法
为了提高电力系统短期负荷预测精度,提出一种基于改进极限学习机(melm)的短期电力负荷预测模型。引入基于结构风险最小化理论,并结合最小二乘向量机回归学习方法,以克服传统极限学习机(elm)在短期负荷预测中存在的过拟合问题。某地区用电负荷预测结果表明,改进模型的泛化性与预测精度均优于传统elm和os-elm模型,可为短期电力负荷预测提供有效依据,具有一定的实用性。
基于灰理论的电力负荷预测模型
针对小样本数据,提出基于gm(1,1)模型进行电力负荷预测模型,并通过实例表明该模型在电力负荷预测中的可行性;开发了基于gm(1,1)模型的电力负荷预测系统,实现了在实际工作中所要求的数据录入、查询、分析和预测功能。
灰色预测方法在电力系统负荷预测中的应用
能源是人类社会发展的关键性问题,电能是最方便的能源。电力负荷预测是电力部门的重要工作之一,对电力系统的规划、建设、运行起重要作用。用灰色系统预测方法进行电力负荷中期预测,结果可对实际工作提供重要依据。
灰色模型在电力负荷预测中的优化与应用
将发电站视为本征性灰色系统,对电力负荷建立灰色预测模型,并根据实际结果对原始模型进行优化。使用序列平移、残差校正、等维新息等方法提高了模型的精度。在实际应用中证明了预测结果的可信度
正交设计灰色模型在年电力负荷预测中的应用
基于正交设计和灰色系统理论,提出一种预测年电力负荷的新方法。采用新陈代谢技术和加权最小二乘参数辨识法对标准gm(1,1)模型进行改进。以背景值系数α、建模所需数据个数m和加权参数q作为可控因素,根据专家经验设计了三因素三水平正交表。以平均绝对百分比误差为输出目标,通过信噪比分析,得出最优参数水平组合,并通过方差分析,进一步得出各可控因素对预测效果的影响程度。对2个电网的负荷进行预测,结果验证了所提方法的可行性和有效性。
灰色模型在电力负荷预测中的应用与改进方法
为科学合理的预测电力系统负荷,采用灰色模型为基本负荷预测模型,提出多种改进负荷预测模型精度的方法,并应用于深圳市年负荷预测中,预测结果显示改进后的模型提高了预测精度。
基于灰色理论的基坑变形预测方法
基于灰色理论的基坑变形预测方法——本文通过具体工程实例,探讨了灰色理论用于高层建筑大基坑的变形预测方法问题,所得出的结论是,灰色理论用于基坑的变形预测是可行的。
电力系统短期负荷预测方法研究
뗧솦쾵춳뛌웚뢺뫉풤닢랽램퇐뺿ퟷ헟ꎺ십뺲늨톧캻쫚폨떥캻ꎺ쯄뒨듳톧닎뾼컄쿗(63쳵ì1.얣뚫쿾.닜쫷뮪.헔샚뗧솦쾵춳뢺뫉풤닢벼쫵벰웤펦폃19882.쇵뎿鬒뗧솦쾵춳뢺뫉풤놨샭싛폫랽램19873.헅럼짺.췴뫨.몫.쯯쿾잿.헅헱폮.닜뷸믹폚욫ퟮ킡뛾돋믘맩럖컶뗄뛌웚뢺뫉풤닢[웚뾯싛컄æ-뗧췸벼쫵2003(3)4.perryshort-termloadforecastingusingmultipleregressionanalysis19995.apapalexopoulos.thesterburgaregression-basedapproachtoshort-termloadforecasting1990(04)6.헅짜뫍.믆뚫믝.뛅컄맣욽뮬쾵쫽폅뮯뗄
基于灰色马尔科夫预测模型的中长期电力负荷预测
中长期负荷预测在电网发展规划编制中占有重要地位,而其关键是数学模型的建立。本文建立了基于马尔科夫修正的灰色负荷预测模型,利用灰色预测模型对未来负荷进行预测,对预测结果采用马尔可夫链预测方法进行改进,提高其预测的准确性。采用灰色马尔科夫模型对某市用电需求负荷建立预测模型,预测了2006至2008年的用电负荷,与实际用电负荷进行对比,结果验证了灰色马尔科夫模型在对电力负荷进行长期预测时具有较高的精度。
一种基于变权动态组合模型的电力负荷预测方法
基于单项预测模型进行电网负荷预测已不能适应当前电网管理的要求。组合预测模型在很大程度上能够弥补单一预测方法的片面性,但在组合模型中固定负荷预测方法也存在预测不准确、可信度低等一系列问题。本文在电力负荷预测系统中引入动态组合的思想,通过自动筛选预测方法、动态配置权重,构建最优组合预测模型。实践证明,该组合预测方法比单个预测方法具有更高的预测准确性。
灰色模型GM(1,1)在短期电力负荷预测中的应用
讨论了灰色模型gm(1,1)及其改进模型在短期电力负荷预测中的应用,提出了适合电网普通日及特殊日电力负荷预测的数据处理方法,提高了预测的精度。
灰色模型GM(1,1)在短期电力负荷预测中的应用
讨论了灰色模型gm(1,1)及其改进模型在短期电力负荷预测中的应用,提出了适合电网普通日及特殊日电力负荷预测的数据处理方法,提高了预测的精度。
基于灰色模型和神经网络组合的短期负荷预测方法
提出了一种基于灰色模型和神经网络组合的短期负荷预测方法。首先利用频域分解消除负荷序列的周期性,然后利用灰色模型计算负荷序列的历史拟合值和未来预测值,将其作为神经网络的输入。在历史数据中选择一天作为基准日,以该基准日的量为参照,以负荷的灰色模型拟合值相对基准日的变化量,以及温度变化量为bp神经网络的输入,实际负荷变化量为输出,训练神经网络并预测待预测日负荷的变化量,加上基准日负荷后得到预测负荷。该方法综合了灰色模型方法和神经网络方法的优点,仿真结果验证了方法的有效性。
基于云模型的电力负荷预测
提出了一种基于云模型的电力负荷预测模型。利用云模型中的云发生器,分别将有限的国民生产总值和工业生产总值的增长率和增长变化率样本数据空间扩充为更具随机性和普遍性的扩展样本数据。以国民生产总值为例,建立国民生产总值与电力负荷之间的规则推理,构造云规则推理器。利用云规则推理器获得电力负荷预测增长率,将国民生产总值和工业生产总值获得的电力负荷预测增长率进行加权平均,并换算得到最终的电力负荷预测值,获得的预测结果精度高。
文辑推荐
知识推荐
百科推荐
职位:暖通项目经理
擅长专业:土建 安装 装饰 市政 园林