光纤耦合器对光纤傅里叶变换光谱仪的影响
光纤耦合器是全光纤傅里叶变换光谱仪(FFTS)的关键元件。根据耦合模理论,分析了光纤耦合器的分束比、附加损耗等传输特性对FFTS的工作带宽和测量准确性的影响。提出一种修正方法,即根据耦合模理论,拓展光纤耦合器传输矩阵的定义,通过实验测量确定其值,进一步计算得到反映光纤耦合器传输光谱特性的窗形函数,用于FFTS的光谱修正。采用此修正方法不但拓宽了FFTS的工作带宽,提高了其测量准确性,而且降低了FFTS对光纤耦合器传输特性的要求。
光纤耦合器对光谱响应的研究
通过对耦合的理论分析,模拟了实际的拉锥过程,构建了光纤耦合器对光谱响应特性的理论模型。详细分析了不同熔烧长度和不同拉伸距离对光谱响应的影响,熔烧长度越短,拉锥曲线震荡越剧烈,到达归一化光功率为0.5所需要的拉伸长度越短,会出现更多的震荡包络;拉伸距离越长,产生的包络震荡越多,波长间隔越密,对光谱响应越为敏感,从实验中验证其合理性。这一模型的建立将大大减少实际工作中的盲目性,对光纤耦合器制作有一定的指导意义。
光纤耦合器光纤耦合器
光纤耦合器光纤耦合器(coupler)又称分歧器(splitter),是将光讯号从一条光纤中分 至多条光纤中的元件,属于光被动元件领域,在电信网路、有线电视网路、用户回路系统、 区域网路中都会应用到,与光纤连接器分列被动元件中使用最大项的(根据electronicat资 料,两者市场金额在2003年约达25亿美元)。光纤耦合器可分标准耦合器(双分支,单位 1×2,亦即将光讯号分成两个功率)、星状/树状耦合器、以及波长多工器(wdm,若波 长属高密度分出,即波长间距窄,则属于dwdm),制作方式则有烧结(fuse)、微光学式 (microoptics)、光波导式(waveguide)三种,而以烧结式方法生产占多数(约有90%)。 烧结方式的制作法,是将两条光纤并在一起烧融拉伸,使核芯聚合一起,以达光耦合作用, 而其中最重要的生产设备是融烧机,也是其中的重
(完整word版)光纤耦合器光纤耦合器
光纤耦合器光纤耦合器(coupler)又称分歧器(splitter),是将光讯号从一条光纤中分 至多条光纤中的元件,属于光被动元件领域,在电信网路、有线电视网路、用户回路系统、 区域网路中都会应用到,与光纤连接器分列被动元件中使用最大项的(根据electronicat资 料,两者市场金额在2003年约达25亿美元)。光纤耦合器可分标准耦合器(双分支,单位 1×2,亦即将光讯号分成两个功率)、星状/树状耦合器、以及波长多工器(wdm,若波 长属高密度分出,即波长间距窄,则属于dwdm),制作方式则有烧结(fuse)、微光学式 (microoptics)、光波导式(waveguide)三种,而以烧结式方法生产占多数(约有90%)。 烧结方式的制作法,是将两条光纤并在一起烧融拉伸,使核芯聚合一起,以达光耦合作用, 而其中最重要的生产设备是融烧机,也是其中的重
光纤耦合器
光纤耦合器 光纤耦合器的概述 ·光纤耦合器的简介 ·光纤耦合器的分类 ·光纤耦合器的制作方式 ·光纤耦合器端口的级联 光纤耦合器的应用 ·2×2单模光纤耦合器的改进... ·光纤耦合器中光孤子传输的... ·可调光子晶体光纤耦合器的制作 光纤耦合器的简介 光纤耦合器是指光讯号通过光纤中分至多条光纤中的元件,属于一种光被动元件,一般 在电信网路、有线电视网路、用户回路系统、区域网路各个领域都会应用到,与光纤连接器 在被动元件中起重大作用,也叫分歧器. 光纤耦合器的分类 光纤耦合器一般分为三类: 标准耦合器:双分支,单位1x2,就是将光讯号未成两个功率 星状/树状耦合器 波长多工器:也称作wdm,一般波长属于高密度分出,即波长间距窄,就是wdm 光纤耦合器的制作方式 光纤耦合器制作方式有烧结(fuse)、微光学式(microoptic
光纤耦合器稳定性分析及对光纤陀螺的影响
为提高光纤耦合器性能稳定性,减少其对光纤陀螺输出的影响,首先建立了耦合器分光比与各参数间关系的数学模型,分析了环境变化对单模耦合器分光比稳定性的影响;其次建立了分光比稳定性与光纤陀螺输出误差间关系的数学模型,仿真与实验结果表明,当光纤陀螺存在角加速度时,光纤耦合器分光比变化率越大,光纤陀螺输出误差越大。当分光比变化率△c.r>1.4e-03/s,不到1min即可使光纤陀螺输出误差ε>0.001(°)/h,对中高精度光纤陀螺的输出准确度将造成严重影响。提出了降低光纤耦合器分光比变化率的一些方法,对光纤陀螺的光路设计和耦合器的适当选取具有较大参考价值。
光纤耦合器结构的红外光谱研究
为获得性能优良的熔锥型光纤耦合器,利用740ft-ir显微红外光谱仪,研究了不同制作工艺条件下耦合器中石英玻璃结构的差异。测定了在不同拉伸速度时制作的光纤耦合器,石英玻璃在650~2000cm-1波数范围内的红外吸收光谱,观察到了石英光纤玻璃的两个特征峰,由si-o-si反对称伸缩振动引起的特征峰940~950cm-1和由si-o-si对称伸缩振动引起的特征峰770~780cm-1。由于工艺条件的不同,特征峰的强度和位置都发生了变化,并测量了其变化的大小。拉制速度越快,石英玻璃中si-o-si键的不对称伸缩振动越强,且波数的移动与光纤耦合器的性能密切相关。
光纤耦合器的用途
光纤耦合器的用途 请问光纤耦合器的用途,还有光纤模块,光纤收发器,光纤跳线,光纤盒,光纤配线架,尾 纤。及如何连接? 光纤耦合器 光纤耦合器(coupler)又称分歧器(splitter),是将光讯号从一条光纤中分至多条光纤中的 元件,属於光被动元件领域,在电信网路、有线电视网路、用户回路系统、区域网路中都会 应用到,与光纤连接器分列被动元件中使用最大项的(根据electronicat资料,两者市场金 额在2003年约达25亿美元)。光纤耦合器可分标准耦合器(双分支,单位1×2,亦即将光 讯号分成两个功率)、星状/树状耦合器、以及波长多工器(wdm,若波长属高密度分出, 即波长间距窄,则属於dwdm),制作方式则有烧结(fuse)、微光学式(microoptics)、 光波导式(waveguide)三种,而以烧结式方法生产占多数(约有90%)。烧结方式的
光纤耦合器的性能分析
在光纤陀螺中,耦合器的性能变化对陀螺的稳定性有很大的影响,对光纤耦合器性能的分析研究对光纤陀螺的进一步发展具有重大意义。本文对耦合器分光比、损耗及偏振串音特性进行了理论分析与实验研究。基于labview和matlab工具的发展和应用,结合两者的优点和实验室的设计需求,设计出了一个便捷、直观、实用性强的耦合器性能分析平台,通过该平台选取出了性能比较好的实验室自制耦合器,便于实际光纤传感系统中不同性能要求的耦合器的选取。
光纤耦合器 (3)
光纤耦合器 班级:122081学号:20081003503姓名:伍士杰 主要从1。光纤耦合器的工作原理2。光纤耦合器的技术参数3。几种类型 耦合器三个方面介绍光线耦合器 一.光纤耦合器的工作原理: 光纤耦合器是把一个或多个光输入分配给一个或多个光输出实现光信号分 路/合路的功能器件。它是一个无源器件。 光纤耦合器的耦合机理是基于光纤的消逝场的模式理论。多模与单模光纤均 可做成耦合器。一般有两种结构型式:1.拼接式,2.熔融拉锥式. 1.拼接式:将光纤埋入玻璃块中的弧形槽中,在光纤侧面进行研磨抛光, 后将经研磨的两根光纤拼接在一起,靠透过纤芯—包层界面的消逝场产生耦合。 原理如下图所示: 2.熔融拉锥式:将两根或多根光纤扭绞在一起,经过对耦合部分加热熔融 并拉伸而形成双锥形耦合区。如下图所示: 下面介绍几种典型光纤耦合器的结构: 其中四端口耦合器又是最基本的结
光纤耦合器(Coupler)
光纤耦合器又名:分歧器 光纤耦合器(coupler)是将光讯号从一条光纤中分至多条光纤中的元件,属于光被动元件领域,在 电信网路、有线电视网路、用户回路系统、区域网路中都会应用到,与光纤连接器分列被动元件中使 用最大项的。 耦合器可分标准耦合器(双分支,单位1×2,亦即将光讯号分成两个功率)、星状/树状耦合器、以 及波长多工器(wdm,若波长属高密度分出,即波长间距窄,则属于dwdm),制作方式则有烧结 (fuse)、微式(microoptics)、光波导式(waveguide)三种,而以烧结式方法生产占多数(约 有90%)。烧结方式的制作法,是将两条光纤并在一起烧融拉伸,使核芯聚合一起,以达光耦合作 用,而其中最重要的生产设备是融烧机,也是其中的重要步骤,虽然重要步骤部份可由机器代工,但 烧结之后,仍须人工作检测封装,因此人工成本约占10~15%左右,
光纤耦合器(Coupler) (2)
光纤耦合器又名:分歧器 光纤耦合器(coupler)是将光讯号从一条光纤中分至多条光纤中的元件,属于光被动元件 领域,在电信网路、有线电视网路、用户回路系统、区域网路中都会应用到,与光纤连接器 分列被动元件中使用最大项的。 光纤耦合器可分标准耦合器(双分支,单位1×2,亦即将光讯号分成两个功率)、星状/树 状耦合器、以及波长多工器(wdm,若波长属高密度分出,即波长间距窄,则属于dwd m),制作方式则有烧结(fuse)、微光学式(microoptics)、光波导式(waveguide) 三种,而以烧结式方法生产占多数(约有90%)。烧结方式的制作法,是将两条光纤并在 一起烧融拉伸,使核芯聚合一起,以达光耦合作用,而其中最重要的生产设备是融烧机,也 是其中的重要步骤,虽然重要步骤部份可由机器代工,但烧结之后,仍须人工作检测封装, 因此人工成本约占10~1
光纤耦合器Coupler
光纤耦合器又名:分歧器 光纤耦合器(coupler)是将光讯号从一条光纤中分至多条光纤中的元件,属于光被动元件领域,在 电信网路、有线电视网路、用户回路系统、区域网路中都会应用到,与光纤连接器分列被动元件中使 用最大项的。 光纤耦合器可分标准耦合器(双分支,单位1×2,亦即将光讯号分成两个功率)、星状/树状耦合器、 以及波长多工器(wdm,若波长属高密度分出,即波长间距窄,则属于dwdm),制作方式则有烧 结(fuse)、微光学式(microoptics)、光波导式(waveguide)三种,而以烧结式方法生产占 多数(约有90%)。烧结方式的制作法,是将两条光纤并在一起烧融拉伸,使核芯聚合一起,以达 光耦合作用,而其中最重要的生产设备是融烧机,也是其中的重要步骤,虽然重要步骤部份可由机器 代工,但烧结之后,仍须人工作检测封装,因此人工成本约占1
光纤耦合器中光孤子传输的仿真研究
光纤耦合器因其在光纤通信中的广泛应用而得到深入研究。文中在分析了光脉冲耦合器中光孤子传输特性的基础上,给出了求解光脉冲在n芯光纤耦合器中传输信号的耦合模方程组的对称分步傅里叶解法,同时给出了采用此方法将光脉冲在双芯和三芯耦合器中进行传输演化的仿真结果。
熔锥型光纤耦合器的光学性能
利用可调谐光源和光谱分析仪建立的光无源器件测试系统,测试了熔锥型光纤耦合器的附加损耗、插入损耗、方向性和均匀性等光学性能,研究了光学特性与拉锥速度的相关规律。实验发现:器件的光学性能与制作工艺密切相关,如存在一个拉锥速度区间(这里为150μm/s附近的区间),使得光纤耦合器的损耗小、方向性好,离开此区间,器件的性能迅速下降。
光纤耦合器和光分路器教程
光纤耦合器和光分路器教程 作者:飞速(fs)内容来源:飞速(fs)日期: 光纤耦合器简介 光纤耦合器的原理是,将两根以上的光纤彼此靠拢进行熔化拉伸,从而产生一个 耦合区。对加热区域进行拉伸,直到出现所需要的耦合特性。这一装置又被称为 熔融拉锥(fbt)耦合器。 随着输入光纤模场直径在下锥区内变得越来越大,耦合过程不断发生。在耦合区 域内,由于两个纤芯彼此非常靠近,因此一个纤芯与另一个纤芯发生耦合现象。 在纤芯直径不断增加的上锥区,模在芯内变得越来越小,最终两个独立的模离开 了两根独立光纤的输出端。有时候,两根光纤会在加热拉伸前被绞合起来。另一 个方法就是研磨光纤端面,使得设计者可以非常精确地控制耦合的效果。 输入光的哪一部分将被耦合进第二根光纤,取决于工作波长、两条纤芯之间的距 离以及耦合区域内的纤芯直径。因此,通过确定耦合区域的大小,我们将能够控
光纤耦合器、光纤终端盒、光纤熔接盒
光纤耦合器、光纤终端盒、光纤熔接盒知识 光纤耦合器是用于两条光纤或尾纤的活动连接,通俗称为法兰盘。 光纤终端盒:也有人叫光纤接线盒,是一条光缆的终接头,在光缆的 两端,起保护光缆与尾纤熔接点的作用,它的一头是光缆,另一头是 尾纤,相当于是把一条光缆拆分成单条光纤的设备。参数指标有:壁 挂式还是机架式,多少端口、什么类型的端口、直接出尾纤还是要装 法兰盘。 光纤熔接盒:也就是光缆接续盒,在光缆的中部,其实就是两条光缆 熔接起来,然后用它来保护接点,是两条光缆对接成一条长的光缆用 的。 最终连接方式: 光缆里的光纤+尾纤(装在终端盒里保护起来)→法兰盘(装在终端盒 上)→光纤跳线→收发器+双绞线→交换机 1、接续盒和终端盒是一样的么? 是不一样的接续盒是全密封的可以防水但是它无法固定尾纤,终端 盒不防水,内部结构一边可固定光缆,一边可固定尾纤。 他们之间是不能互换使用的,
熔融拉锥光纤耦合器波长响应研究
基于变分理论,分析了常规对称单模熔融拉锥光纤耦合器的腰部区域和梯度区域的耦合行为,得出了耦合器耦合比与波长的关系,并在熔融拉锥机的实验平台上进行了相应的波长响应实验,理论和实验结果都表明:在一定波长范围内,耦合比不但对波长敏感,且响应具有单调性。利用此特性,光纤耦合器有望作为光波长敏感元件,开发出结构简单、造价低廉的光波长探测器。
球状光纤耦合器参数与耦合效率的关系
根据光线追迹方法,通过计算和推导,讨论了在制作和设计球状光纤耦合器时应该注意的参数设计,得到其参数与耦合效率的解析表达式,为球状光纤耦合器的设计提供了理论计算依据。
基于光纤耦合器的声发射传感器
为检测变压器内局部放电产生的声发射信号,介绍了一种基于特殊光纤熔融拉锥耦合器型声发射传感器。它是利用声波引起的扰动改变耦合器两臂光功率输出的特点来检测声发射信号。实验结果表明:此种传感器在10khz~250khz范围内对声发射信号有良好响应,在155khz灵敏度为5.6×10-6v/pa,噪声为1.8pa声压,有望在复合材料与结构、电力无损检测方面得到应用。
利用WDM光纤耦合器的光纤光栅传感解调技术
根据wdm光纤耦合器波长解调方案的工作原理、偏振特性以及影响系统波长分辨力的因素,提出一种改进的利用wdm光纤耦合器的光纤光栅传感解调技术。该技术在原技术的基础上,采用偏振控制器控制入射光偏振状态,提高了解调的精度和稳定性。对wdm光纤耦合器的多次波长扫描结果表明,采用偏振控制器后,其波长误差可减小到5pm左右。实验采用1540/1560nm的wdm光纤耦合器对单点光纤光栅应变传感器进行静态解调,结果表明:按此技术开发的解调系统具有0.01nm波长分辨力和10nm的波长线性解调范围。
用于光纤光栅解调的波长敏感光纤耦合器
为了拓宽光纤耦合器的使用范围,开发光纤耦合器的新功能,采用熔锥技术制作波长敏感耦合器,该耦合器在分光的同时对波长敏感。通过耦合理论验证实验结果,实验数据与理论值相符合。实验中得到波长灵敏度最大值为17.86%/nm的耦合器。采用拉锥工艺制作波长敏感耦合器工艺简单,耦合比峰值对应波长控制易于实现。该耦合器可用于光纤光栅布拉格波长漂移解调。令待解调光纤光栅布拉格波长与耦合器波长灵敏度最大值对应的波长一致,当波长发生漂移时,耦合器输出耦合比发生变化。自制的波长敏感耦合器实现了对布拉格波长为1566.71nm光纤光栅波长漂移的解调,波长漂移1.80nm,耦合比变化20.34%。此种解调方式具有光路简单,易于与光纤匹配的优点,可以应用在大型建筑中光纤光栅的健康监测。
文辑推荐
知识推荐
百科推荐
职位:自动控制安全评价师
擅长专业:土建 安装 装饰 市政 园林