共沉淀法制备尼龙6/碳纳米管复合材料及其性能研究
通过共沉淀法制备了尼龙6(PA6)/碳纳米管(CNTs)复合材料,并对复合材料的拉伸强度、分散和界面情况等进行了表征。添加质量分数2%CNTs的复合材料拉伸强度提高了25%,继续加大CNTs用量,强度有所降低。SEM表明CNTs在复合材料中分散良好。研究了CNTs用混合酸修饰对复合材料性能的影响。Raman光谱显示,在复合材料中,CNTs各特征谱峰向高波数位移。
尼龙/碳纳米管复合材料的制备和性能
碳纳米管是一种一材多能和一材多用的功能材料和结构材料,尼龙/碳纳米管复合材料具有优异的导电性、超强的力学性能和良好的导热性,可望用于汽车、飞行器制造、电子机械等领域。对尼龙/碳纳米管复合材料的制备方法、主要性能和应用进行综述。
SPS法制备铜-2%碳纳米管复合材料
首先采用颗粒复合法(pcs,particlecompositesystem)对cu-碳纳米管(cnt)粉末进行表面改性处理,得到cnt镶嵌或包覆于较软微米cu颗粒表面的复合粉,其形貌近似球形,然后将复合粉通过sps烧结工艺制备成cu-2%(质量分数)cnt复合材料。通过硬度测试、密度测试、sem形貌观察和能谱分析,研究了pcs处理时间对cu-2%cnt复合材料的组织和性能的影响并与普通混粉后的复合材料做了比较。结果表明,随着pcs处理时间的延长,复合粉末粒径不断减小,在40min以后,随时间的延长,粒径基本保持不变。与纯cu相比,经pcs处理后制备的cu-2%cnt复合材料硬度有26%~34%的提高,与普通混粉24h相比提高了20%~26%;cnt在铜基体中呈连通的网状结构,复合材料的致密度达97%以上。
原位聚合制备尼龙6/多壁碳纳米管复合材料及性能表征
用原位聚合法制备了尼龙6/多壁碳纳米管(mwcnts)复合材料。先对多壁碳纳米管进行胺基功能化处理,再研究了多壁碳纳米管添加量对复合材料电性能和力学性能的影响,结果显示,复合材料体积电阻率和表面电阻率相对于不加碳纳米管制得的尼龙6基体降低了3个数量级,复合材料的介电常数显著增加,相对于不加碳纳米管的增加了71%;复合材料的弹性模量、弯曲模量、弯曲强度随碳纳米管加入量的增加大幅提高。
碳纳米管/尼龙6复合材料的非等温结晶动力学研究
碳纳米管经过了酸化处理,用ftir对处理后的碳纳米管进行了结构表征。采用哈克转矩流变仪制备了碳纳米管/尼龙6纳米复合材料。利用sem对碳纳米管与尼龙6复合材料的结构进行了研究。通过dsc对复合材料的非等温结晶动力学进行了研究,采用jeziorny修正的avrami方程对非等温结晶动力学进行了处理。结果表明,jeziorny可以很好地描述碳纳米管/尼龙6复合材料的非等温结晶过程。随着降温速率的升高,结晶温度降低,结晶温度范围变大,结晶所需要的时间缩短。
简单熔融混合制取碳纳米管增强尼龙6复合材料
碳纳米管(cnts)具有高长径比、纳米级直径、较低的密度、良好的物理特性(如最大力学性能,高电导和热导性),因此在高性能和多功能的聚合物纳米复合材料中可以作为理想的增强填料。开发高性能cnts/聚合物纳米复合材料的困难在于:(1)聚合基体中cnt的均匀分散;
良好分散尼龙6/多壁碳纳米管复合材料的研究
采用柔和混合法制备纳米粒子良好分散的尼龙-6/多壁碳纳米管(pa6/mwnts)复合材料,采用差示扫描量热仪(dsc)和广角x射线衍射法(xrd)研究了mwnts对pa6基体结晶熔融行为的影响。dsc结果表明,mwnts的加入大幅度地提高了pa6的结晶温度(最高提高约20℃),基体的结晶度也有所提高,说明良好分散的mwnts在pa6结晶过程中呈现明显的异相成核作用;xrd结果证实,分散良好的mwnt促进pa6形成α晶型,抑制γ晶型的形成。同时,mwnt的加入导致复合材料出现熔融双峰现象,其形状随mwnt含量的变化而改变,双峰结构可能是由于熔融过程中伴随着重结晶而引起的。
碳纳米管/HDPE复合材料的制备及性能研究
将酸化处理以后的碳纳米管(cnts)与高密度聚乙烯(hdpe)复合,采用机械共混法制备了定向cnts/hdpe复合材料,并对其力学性能、相态结构、流变性能及热性能进行了研究。结果表明:cnts的加入,提高了复合材料的屈服强度和拉伸模量,但同时却降低了材料的断裂强度和断裂伸长率;cnts在hdpe基体中有了较好的分散性和相容性;cnts的加入对复合材料流变性能产生了较大的影响,加入少量的cnts可以使复合材料体系的表观粘度降低,有利于hdpe加工性能的改善;cnts加入后,hdpe的熔融温度和结晶熔融焓均有所下降。
PP/碳纳米管复合材料的制备及电性能
采用原子转移自由基(atrp)活性聚合方法在多壁碳纳米管(mwnt)表面接枝丙烯酸丁酯聚合物(pba),并以此对聚丙烯(pp)进行改性。红外光谱(ft-ir)及透射电子显微镜(tem)测试结果表明,采用atrp法成功地将pba接枝到多壁碳纳米管(mwnt)表面。对pp/mwnt复合材料电性能研究表明,mwnt-pba的添加比mwnt-cooh更能降低复合材料的电阻率。mwnt-pba的加入可使pp从绝缘材料转变为抗静电材料。mwnt-pba和mwnt-cooh加入pp都能提高材料的电性能,而mwnt-pba比mwnt-cooh的作用更加明显。
尼龙/碳纳米管复合材料研究进展
碳纳米管(cnts)由于其独特的结构,较高的长径比,较大的比表面积,且具有超强的力学性能和良好的导热性,已经证明是塑料的非常优异的导电填料,聚合物基碳纳米管复合材料可望应用于材料领域的多个方面,尤其在汽车、飞机及其它飞行器的制造等军事和商业应用上带来革命性的突破。本文介绍了碳纳米管的结构形态和碳纳米管的制备、纯化、修饰方法及聚合物基碳纳米管复合材料的制备、性能,并综述了近几年来尼龙/碳纳米管复合材料的研究进展及应用前景。
原位复合法制备碳纳米管复合材料的研究进展
介绍了目前制备碳纳米管复合材料的主要方法,综述了原位复合法在制备碳纳米管复合材料中的应用。通过对现有碳纳米管复合材料原位复合技术的工艺方法、工艺特点、材料性能以及目前应用现状等几方面的讨论,展示了该制备方法在实际应用中的优势。
碳纳米管-铜复合材料及其微细配线
电子器件为了增加功能和缩小体积,不断地往小型化发展。所用布线也越来越细。碳纳米管就是适应这种需要,将一层石墨的碳二维层,制成筒状,成为直径为数rim到数+nm的圆筒状碳材料。日本产业技术综合研究所山田健朗采用有机系铜镀液,进行电解镀,使碳纳米结构体内部析出铜核子,再在氢气氛下还原处理,最后用水溶性镀铜也进行第二阶段镀铜,这样就可以在碳纳米管内部以及碳纳米管之间都镀上铜,
铜/碳纳米管复合材料的制备与表征
报道了在多壁碳纳米管(mwnts)表面修饰聚丙烯酸(分子量为500~1000)作为亲水层,改善纳米管在水溶液中的溶解性,减少碳管自身团聚,顺利实现碳纳米管表面化学镀铜。同时也考察了温度、时间、搅拌速度等因素对镀层的影响,确定中性条件在碳纳米管表面镀铜的最佳条件。
多壁碳纳米管/聚氯乙烯复合材料的制备
文章阐述了通过溶液混合法制备多壁碳纳米管/聚氯乙烯复合材料,并对其性能进行了红外表征,表明制得的复合材料具有良好的性能。
搅拌摩擦加工法制备碳纳米管增强铝基复合材料
为了制备晶粒细小、组织均匀的复合材料,提高材料的力学性能,用搅拌摩擦加工法制备碳纳米管增强铝基复合材料,并对不同碳纳米管含量的复合材料的微观结构、拉伸性能及断口形貌进行分析。结果表明:碳纳米管添加到铝基体中,搅拌摩擦中心区晶粒细小,碳纳米管与基体之间结合良好,未发现明显的缺陷;碳纳米管对基材有明显的强化作用,铝基复合材料抗拉强度随着碳纳米管含量的增加而提高;碳纳米管体积分数为7%时,抗拉强度达到201mpa,是基材的2.2倍;复合材料在宏观上呈现脆性断裂特征,微观上呈现韧性断裂特征,其断裂机制以cnts/al界面脱粘、基体撕裂和增强体断裂为主。
碳纳米管载纳米银复合材料制备与抑菌性能测试
本文在羧基化碳纳米管和上制备了纳米银粒子,通过透射电子显微镜(tem)、抑菌圈实验测试方法对改性碳纳米管及制得的碳纳米管/纳米银复合材料进行了分析表征。并通过抑菌圈实验考察了复合材料在的抑菌性能。通过抑菌圈实验可以看出碳纳米管/纳米银复合材料有明显的杀菌功效。碳纳米管载银复合材料具有很高的稳定性和良好的抑菌性,如果将其加到涂料中,会在海洋防污领域得到很大应用。
球磨法制备碳纳米管/铜复合材料
用球磨法制备了碳纳米管/cu复合材料粉末,采用扫描电镜(sem)对不同工艺制备的复合粉末进行研究。结果表明,采用两步实验,通过调节工艺参数,可以得到恰当长度的碳管,能够实现碳管在铜基体中的有效分散。
碳纳米管预制块铸造法制备CNTs/AZ91复合材料研究
在氩气保护下,采用碳纳米管预制块铸造法制备了碳纳米管/az91镁基复合材料。观察和分析了复合材料的微观组织,测试了其室温力学性能,并利用扫描电子显微镜(sem)和能谱分析(sed)对复合材料拉伸断口形貌进行了观察和分析。研究结果表明:该方法能有效地将碳纳米管添加到镁合金熔体中并且均匀分散;随着碳纳米管的加入,复合材料的晶粒组织得到不断的细化,综合力学性能得到明显提高。
碳纳米管与铜复合材料
日本产业技术综合研究所等研究单位用单层碳纳米管(筒状碳原子)与铜复合,制得密度小于铜、金的复合物。制取工艺:基板上的单层碳纳米管在含铜离子的有机溶液中慢慢通过,再在与铜亲和力强的水溶液中电镀,这种复合材料每cm2可通入6亿安培电流,电流容量为金和铜的100倍。
碳纳米管/尼龙1212复合材料牵引条件下的结晶性能
研究了碳纳米管的加入对尼龙基体结晶性能和晶型转变的影响。通过waxd和dsc测试表明,碳纳米管的加入使复合材料的结晶出现多重性,并且在外力牵引过程中在一定程度上阻碍了晶型的转变;同时还使尼龙的熔限变宽,并使得结晶温度升高,结晶温度范围变宽,结晶更加容易;另外材料的结晶度和熔点有了一定程度的提高。
碳纳米管-海棉钛复合材料
日本大阪大学与北海道大学共同研制成功碳纳米管(cnt)均匀分散的纯海棉钛复合材料,在该材料中添加了0.35%(质量)的cnt,从而制得了抗拉强度高达930mpa的复合材料。首先将cnt置入含有界面活性剂的水溶液中,采取超声波振动搅拌并使cnt分散。海棉钛粉经过这种水溶液浸渍后取出,经热处理除去水分和界面活性剂后制成烧结体并挤压成材。
尼龙66/碳纳米管复合材料分散性与结晶性能的研究
采用混合酸对多壁碳纳米管(mwnts)进行修饰,使mwnts携带羧基基团。将修饰前后的mwnts与己二酸、己二胺进行原位聚合制备了尼龙(pa)66/mwnts复合材料。采用场发射环境扫描电子显微镜和差示扫描量热仪研究了复合材料的分散性和结晶性能。研究表明,采用原位聚合制备的复合材料中,mwnts具有很好的分散性,修饰过的mwnts分散性更佳;mwnts的加入提高了pa66的结晶速率和结晶温度,同时提高了其结晶完整性。
环氧树脂/氟化碳纳米管复合材料的制备与性能
用聚四氟乙烯对碳纳米管(cnts)进行氟化改性,制备了氟化碳纳米管(f-cnts),并采用超声分散法和模具浇注法制备了环氧树脂(ep)/f-cnts复合材料。采用红外光谱、x射线衍射对f-cnts进行了表征,并利用透射电子显微镜观察了f-cnts在丙酮中的分散情况。研究了不同含量的f-cnts对ep/f-cnts复合材料的冲击性能、弯曲性能的影响。结果表明,在cnts表面生成了c—f键,成功地制备了f-cnts,使cnts之间的缠结团聚现象得到明显改善,提高了cnts在有机溶剂中的分散性;当f-cnts含量为1.5%(质量分数,下同)时,材料的冲击强度和弯曲强度最高,分别为25.90kj/m2、128.3mpa。
碳纳米管_聚酰亚胺功能复合材料的制备与性能研究
碳纳米管_聚酰亚胺功能复合材料的制备与性能研究
聚丙烯/多壁碳纳米管复合材料的制备及电性能研究
采用熔融混炼的方法制备聚丙烯/多壁碳纳米管复合材料(pp/mwnts)。研究了复合材料的表面电阻率与mwnts含量的关系,结果发现:随着mwnts含量的不断增加,复合材料的电阻率呈不断下降趋势,并发现mwnts含量为3%时为复合材料的导电阈值。又通过对试样作透射电镜观察研究,从微观角度分析了复合材料电性能变化的原因。
文辑推荐
知识推荐
百科推荐
职位:给排水专业工程师
擅长专业:土建 安装 装饰 市政 园林