单模及多模光纤折射率分布测量方法研究
通过对几种单模及多模光纤折射率分布测量方法的分析研究,得到单模光纤与多模光纤折射率分布测量方法的根本区别。由于单模光纤芯径比较小,因而只能用波动理论分析其传输机理,其中的远场法和近场法测量都是基于标量亥姆霍兹波动方程,即以单模光纤的基本传输理论进行测量;而多模光纤由于其芯径比较大,故而用射线理论分析其传输原理较为合理。多模光纤的折射近场法和近场扫描法均是以纤芯半径处数值孔径不同,对应的折射模和传导模不同为依据来进行测量的。
高功率脉冲激光对阶跃折射率多模光纤损伤机理
理论分析和模拟仿真研究了激光点火系统中光纤端面损伤、光纤初始输入段损伤和光纤内部损伤机理。结果显示:端面损伤主要是由光纤端面的杂质和缺陷引起;光纤初始输入段损伤是由光束的初次反射造成光纤局部激光能量密度增大引起的;光纤内部体损伤主要由于激光自聚焦效应引起损伤和光纤受到的意外应力产生微小碎片,吸收激光能量,引起光纤局部损伤。给出了激光点火系统中提高光纤损伤阈值的一般方法,主要包括光纤端面处理、设计合理的激光注入耦合装置。
基于数字全息层析术对单模光纤折射率三维分布的重构研究
提出了一种基于数字全息层析术的数字重构方法。针对单模光纤(smf)的折射率分布具有轴对称性的特点,可仅根据在任一与光纤轴向垂直的旋转角度下从数字全息图再现出的相位分布,采用层析算法重构出与smf轴向垂直的折射率断层分布。通过获取smf的折射率断层分布,就可获取其折射率三维分布。与以往测量smf折射率分布的方法相比,本文方法具有对被测样品无损、测量方法简单及测量速度快等特点。理论分析与光学实验结果均验证了本文所提方法的有效性。
单模多模光纤
一般区别如下: 光源的区别: 单模模块一般采用激光二极管ld(半导体激光器发出的激光是相干光,其方向性比led好很多,大大 提高了光源和光纤耦合效率,在半导体激光器中要形成激光)或光谱线较窄的led作为光源,耦合部件尺 寸与单模光纤配合好,使用单模光纤传输时能传输较远距离。 多模模块一般采用价格较低的led作为光源,耦合部件尺寸与多模光纤配合好。 光纤(光导纤维)是新一代的传输介质,与铜质介质相比,优势如下: 1、不向外辐射电子信号,所以安全可靠性好,网络性能好 2、光纤带宽远超铜质电缆 3、光纤传输距离远,最大连接距离达两公里以上。 光纤分类:单模光纤和多模光纤(所谓模就是指以一定的角度进入光纤的一束光源) 多模光纤使用发光二极管(led)作为发光设备,而单模光纤使用的是激光二极管(ld) 多模光纤允许多束光线穿过光纤。因为不同光线进入光纤的角度不同,所以到达光纤末端的时
单模多模光纤 (2)
单模多模光纤 一般区别如下: 单模模块一般采用ld或光谱线较窄的led作为光源,耦合部件尺寸与单模光纤配合好, 使用单模光纤传输时能传输较远距离。 多模模块一般采用价格较低的led作为光源,耦合部件尺寸与多模光纤配合好。 光纤是新一代的传输介质,与铜质介质相比,优势如下: 1.光纤不向外辐射电子信号,所以安全可靠性好,网络性能好 2.光纤带宽远超铜质电缆 3.光纤传输距离远,最大连接距离达两公里以上。 光纤分类:单模光纤和多模光纤(所谓模就是指以一定的角度进入光纤的一束光源) 多模光纤使用发光二极管(led)作为发光设备,而单模光纤使用的是激光二极管(ld) 多模光纤允许多束光线穿过光纤。因为不同光线进入光纤的角度不同,所以到达光纤末 端的时间也不同,这就是我们通常所说的模色散。色散从一定程度上限制了多模光纤所能实 现的带宽和传输距离。所以一般用于同一办公楼
多模光纤与单模光纤
深圳凯祺瑞科技有限公司-http://www.***.*** 多 模 光 纤 与 单 模 光 纤 深圳凯祺瑞科技有限公司-http://www.***.*** 1什么是单模与多模光纤?他们的区别是什么? 单模与多模的概念是按传播模式将光纤分类──多模光纤与单模光纤传播模式概念。我 们知道,光是一种频率极高(3×1014hz)的电磁波,当它在光纤中传播时,根据波动光学、 电磁场以及麦克斯韦式方程组求解等理论发现: 当光纤纤芯的几何尺寸远大于光波波长时,光在光纤中会以几十种乃至几百种传播模式 进行传播,如tmmn模、temn模、hemn模等等(其中m、n=0、1、2、3、⋯⋯)。 其中he11模被称为基模,其余的皆称为高次模。 1)多模光纤 当光纤的几何尺寸(主要是纤芯直径d1)远远大于光波波长时(约1μm),光纤中会存 在着几十种乃至几
如何选择单模光纤与多模光纤?
前言: 最近有人咨询薛哥关于单模光纤和多模光纤方面的知识?什么是单模光纤?什么是多模光纤?如何选择这两 种光纤呢? 正文: 1、什么是单模与多模光纤?他们的区别是什么? 单模与多模的概念是按传播模式将光纤分类──多模光纤与单模光纤传播模式概念。我们知道,光 是一种频率极高(3×1014hz)的电磁波,当它在光纤中传播时,根据波动光学、电磁场以及麦克斯韦式 方程组求解等理论发现: 当光纤纤芯的几何尺寸远大于光波波长时,光在光纤中会以几十种乃至几百种传播模式进行传播, 如tmmn模、temn模、hemn模等等(其中m、n=0、1、2、3、⋯⋯)。 其中he11模被称为基模,其余的皆称为高次模。 1)多模光纤 当光纤的几何尺寸(主要是纤芯直径d1)远远大于光波波长时(约1μm),光纤中会存在着几十种 乃至几百种传播模式。不同的传播模式具有
单模光纤和多模光纤 (2)
单模光纤和多模光纤(“模”是指以一定角速度进入光纤的一束光)。 单模采用激光二极管ld作为光源,而多模光纤采用发光二极管led为光源。 多模光纤(multimodefiber):中心玻璃芯较粗(50或62.5μm),可传多种模式的光。但其模间色散较大, 这就限制了传输数字信号的频率,而且随距离的增加会更加严重。多模光纤的芯线粗,传输速率低、距离 短,整体的传输性能差,但成本低,一般用于建筑物内或地理位置相邻的环境中; 单模光纤(singlemodefiber):中心玻璃芯很细(芯径一般为9或10μm),只能传一种模式的光。其模间 色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较 高的要求,即谱宽要窄,稳定性要好。单模光纤的纤芯相应较细,传输频带宽、容量大、传输距离长,但 需激光源,成本较高,通常
单模光纤和多模光纤
多模光纤和单模光纤区别 1、多模光纤是光纤通信最原始的技术,这一技术是人类首次实现通过光纤来进行通信的 一项革命性的突破。 2、随着光纤通信技术的发展,特别是激光器技术的发展以及人们对长距离、大信息量通 信的迫切需求,人们又寻找到了更好的光纤通信技术----单模光纤通信。 3、光纤通信技术发展到今天,多模光纤通信固有的很多局限性愈发显得突出: ①、多模发光器件为发光二极管(led),光频谱宽、光波不纯净、光传输色散大、传输距 离小。1000mbit/s带宽传输,可靠距离为255米(m)。100mbit/s带宽传输,可靠距离为2 公里(km)。 ②、因多模发光器件固有的局限性和多模光纤已有的光学特性限制,多模光纤通信的带宽最 大为1000mbit/s。 4、单模光纤通信突破了多模光纤通信的局限: ①、单模光纤通信的带宽大,通常可传100gbi
多模光纤和单模光纤区别
多模光纤和单模光纤区别 ————————————————————————————————作者: ————————————————————————————————日期: ? 多模光纤和单模光纤区别 1、多模光纤是光纤通信最原始的技术,这一技术是人类首次实现通过光纤来进行通信的 一项革命性的突破。 ?2、随着光纤通信技术的发展,特别是激光器技术的发展以及人们对长距离、大信息量通 信的迫切需求,人们又寻找到了更好的光纤通信技术----单模光纤通信。? 3、光纤通信技术发展到今天,多模光纤通信固有的很多局限性愈发显得突出: ①、多模发光器件为发光二极管(led),光频谱宽、光波不纯净、光传输色散大、传输距离小。 1000mbit/s带宽传输,可靠距离为255米(m)。100mbit/s带宽传输,可靠距离为2 公里(km)。?②、因多模发
单模光纤与多模光纤
光纤通信的特点 光纤通信以其独特的优越性成为当今信息传输的主要手段,与卫星通信、微波通信共同 支撑着全球通讯网,同时80﹪以上的信息在光纤中传送,光复用技术已极大地提高了网络 的传输容量,而全光传送网将是光纤通信技术的发展方向。 1、巨大的传输容量 这是光纤通信优于其他通信的最显著特点。现在光纤通信使用的频率为1014—1015hz 数量级,比常用的微波频率高104—105倍,因而信息容量理论上比微波高出104—105倍。 梯度多模光纤每公里带宽可达数ghz,单模光纤带宽可达数百thz数量级。 注:(1t=103g=106m=109k=1012单位常量) 2、极低的传输衰耗 多模光纤在850nm波长下的衰减系数为0.8—2.0db/km,在1300nm波长下的衰减系数 为0.8—1.5db/km;单模光纤在1310nm波长下的衰减系数为
单模光纤与多模光纤的对比
单模光纤与多模光纤的对比 作者:锅头 单模光纤多模光纤 中心玻璃芯很细,芯径一般为9或10μm。芯径较大,纤芯直径为50μm至100μm。 可用较为廉价的耦合器及接线器。 传输距离较长,根据目前的光电转换设备 来看,可以传输20~100km,理论上能达 到120公里。由于损耗小,传输长,光纤 主干布线大多用单模。 传输距离较短,最多传输5km。多用于较 短范围内的布线。 单模光缆价格比多模光缆便宜一些,但是 光电转换设备价格比多模较贵,所以整体 而言单模的总体价格要偏高些。 多模光纤布线总体价格要偏低。 色散小,损耗小。色散大,损耗大。 只能传一种模式光信号。可以传多种模式光信号。 使用激光二极管(ld)作为发光设备。使用发光二极管(led)作为发光设备。 通常用于连接办公楼之间或地理分散更 广的网络。 通常用于同一办公楼或距离先对较近的区 域内的网
如何区分单模光纤与多模光纤
光缆---蓝,橘,绿,棕,灰,白,红,黑,黄,紫,粉,青.. 2种颜色一对.最远端用前最近芯,最近用最后两芯. 一般情况下是按红头绿尾的方式来区分的。 例如:红束管边上的第一根白色束管称第一组。第二根是第二组。以 次类推。纤芯顺序一般情况下:蓝、橙、绿、棕、灰、白、红、黑、 黄、紫、粉、青。有的光缆会有“本”色芯。 电缆---a(主)序:白,红,黑,黄,紫 b(副)序:蓝,橙,绿,棕,灰 主副组合共组成25对线,白蓝为第一对线,依次为序,紫灰为第25 对线。大对数电缆采用以上颜色组合的色带捆扎小线序 如何区分单模光纤与多模光纤 室外光缆可以从标识上区分如下: gyxtw-4b1 gyxtw为光缆型号,意为标准中心束管式光缆 4代表此条光缆为4芯 b1代表此光缆采用的是单模g.652b光纤 gyts-8b4 gyts为光缆型号,意为标准
基于纤芯失配多模干涉的光纤折射率传感器
基于多模干涉效应的单模-多模-单模(sms)结构光纤折射率传感器通常需要进行包层腐蚀来提高灵敏度,而且易受环境温度影响。为克服sms结构的这些不足,提出了一种新型的基于纤芯失配多模干涉的光纤折射率传感器,由单模光纤-色散补偿光纤-单模光纤(smf-dcf-smf)级联光纤布拉格光栅(fbg)构成,长度不超过100mm。对其灵敏度、线性范围和温度特性等进行了测试,实验结果显示在测量折射率为1.33~1.39的折射率液时,特征波长与折射率呈线性关系,灵敏度为232.8nm,级联的fbg具有良好的温度校准功能。
光纤分为多模光纤和单模光纤
光纤分为多模光纤和单模光纤。 多模光纤分为阶跃型多模光纤和梯度型多模光纤。 阶跃型多模光纤---芯玻璃的折射率n1必须大于包层玻璃折射 率n2,在 玻璃与包层玻璃的界面上折射率呈阶跃增大,且各自恒定不变, 这光纤结构最 单,制作最容易,但模色散大,带宽窄,已经很少使用。 梯度型多模光纤---采用芯玻璃折射率自光纤芯轴最大n1处逐 渐减小至包层玻璃界面处n2的折射率分布做成精确的抛物线状 (g=2)时,这种光纤减小了模色散, 提高了带宽。 单模光纤有g652、g653、g654、g655、g656等类型。 单模光纤的纤芯直径8-9um,外径125um。 g652光纤---最长用的是简单阶跃匹配包层型和简单阶跃下凹内 包层型。 简单匹配包层型光纤性能稍差,一般采用参杂ge来提高纤芯折 射率,参杂过多会因材料色散损耗增加光纤的衰减,因此相对折 射率差△偏低(约为
单模与多模光纤区别及相关介绍
单模光纤与多模光纤区别 单模光纤和多模光纤可以从纤芯的尺寸大小来简单地判别。单模光纤的纤芯很小,约4~ 10um,只传输主模态。这样可完全避免了模态色散,使得传输频带很宽,传输容量很大。这种 光纤适用于大容量、长距离的光纤通信。它是未来光纤通信与光波技术发展的必然趋势。 多模光纤又分为多模突变型光纤和多模渐变型光纤。前者纤芯直径较大,传输模态较多,因而 带宽较窄,传输容量较小;后者纤芯中折射率随着半径的增加而减少,可获得比较小的模态色 散,因而频带较宽,传输容量较大,目前一般都应用后者。 由于多模光纤中不同模式光的传波速度不同,因此多模光纤的传输距离很短。而单模光纤 就能用在无中继的光通讯上。 在光纤通信理论中,光纤有单模、多模之分,区别在于: 1.单模光纤芯径小(10mm左右),仅允许一个模式传输,色散小,工作在长波长(1310nm 和1550nm),与光器
单模及多模光纤的特性参数
光纤的特性参数可以分为三大类即几何特性参数、特性参数与传输特性参数。受篇幅所限我们仅简单介绍几个富有代表性 的典型参数。1、多模光纤的特性参数①衰耗系数a衰耗系数是多模光纤最重要的特性参数之一(另一个是带宽系数)。因 为在很大程度上决定了多模。 光纤的特性参数可以分为三大类即几何特性参数、特性参数与传输特性参数。受篇幅所限我们仅简单介绍几个富有代表 性的典型参数。 1、多模光纤的特性参数 ①衰耗系数a 衰耗系数是多模光纤最重要的特性参数之一(另一个是带宽系数)。因为在很大程度上决定了多模光纤的中继距离。 其中最主要的是杂质吸收所引起的衰耗。在光纤材料中的杂质如氢氧根离子、过渡金属离子(铜、铁、铬等)对光的吸收能 力极强,它们是产生光纤衰耗的主要因素。因此要想获得低衰耗光纤,必须对制造光纤用的原材料二氧化硅等进行十分严格 的化学提纯,使其杂质的含量降到几个ppb以下。 ②
单端腐蚀光纤布拉格光栅在低折射率区的理论模型及设计
研究单端腐蚀光纤布拉格光栅(fbg)在低折射率区(约1.333~1.360)对折射率与温度同时测量的理论模型,分析其主要结构参数对折射率灵敏度和线性度的影响,建立相应的线性近似理论和误差分析方法。理论仿真结果表明,可通过减小腐蚀区的直径或选择光栅周期较大的fbg制作传感器来提高折射率灵敏度,但这同时会降低传感器的线性度及增大折射率灵敏度的理论误差。在此理论分析基础上,设计并制作一个单端腐蚀fbg,进行相应实验研究,实验结果与仿真结果一致。
单模与多模光纤的区分及应用--稿件
光纤的区分及其应用 随着科学技术的迅速发展,随着多媒体技术的出现和应用,随着 宽带上网、数字电视的推广和普及,光导纤维—这种新型基础材料, 现已在通信、电子和电力等领域已经得到广泛的扩展和应用。 一、光导纤维的区分 光纤(opticalfiber),光导纤维的简写,是一种利用光在玻璃或塑 料制成的纤维中的全反射原理而达成的光传导工具。在光纤通信理论 中,按光在光纤中的传输模式可分为:单模光纤和多模光纤。 1.单模光纤 单模光纤(singlemodefiber):中心玻璃芯很细(芯径一般为9 或10μm),包层外直径125μm。只能传一种模式的光,因此,可完 全避免了模态色散,使得传输频带很宽,传输容量很大。这种光纤适 用于大容量、长距离的光纤通信。它是未来光纤通信与光波技术发展 的必然趋势。 常见的几种单
基于多模光纤的动态光散射粒径测量研究
介绍了一种用多模光纤构造的动态光散射粒径测量实验系统,系统中没有对接收光纤的孔径角加任何限制措施。分别用单分散,多分散和不同浓度的标准聚苯乙烯乳胶球悬浮液检测了该系统的适用性。结果表明,该系统可准确地测量浓度(体积分数)达5%的聚苯乙烯乳胶球溶液中悬浮颗粒的粒径分布。
少模光纤布拉格光栅折射率传感的分析与测量
理论分析和模拟计算了少模光纤布拉格光栅基模及高阶模的耦合与传输特性,得到在相同外部折射率变化情况下,少模光纤基模与高阶模耦合对应的布拉格波长变化,比正、反向基模之间耦合对应的布拉格波长变化显著增大。实验上制作了少模光纤布拉格光栅,测量了基模之间以及基模与高阶模之间对应的布拉格波长随外部折射率、温度变化的情况,得到与理论分析相符的结果。而对于温度变化对折射率测量结果干扰的问题,提出了通过计算布拉格波长差来克服温度影响的方法。这些结果为采用布拉格光纤光栅测量外部折射率变化提供了一种新的途径。
双包层光纤折射率研究及纤芯结构优化设计
采用matlab和comsol建立单模光纤内激光传输模型,对双包层内光纤折射率和纤芯结构对光能量分布的影响进行了理论研究。系统分析了光纤芯径与数值孔径、归一化频率和功率填充因子的关系,依据得到的结果进一步采用多模物理耦合仿真方法对不同类型的单模双包层光纤纤芯的能量分布进行仿真,探索了不同折射率分布情况对纤芯能量分布的影响。计算和仿真结果表明:凹面折射率分布光纤的光斑模场面积最大,单位面积的功率分布最低。针对大功率光纤激光器的应用需求设计了工作波长为1.064μm、纤芯直径为10μm、凹面直径为8μm、数值孔径为0.12的单模凹面折射率双包层光纤,为提高光纤泵浦效率、降低纤芯的能量密度提供了思路。
多模光纤与单模光纤的优缺点与应用2
多模光纤与单模光纤的优缺点与应用2
单模光纤与多模光纤的区别与选择
潍坊华纤光电科技有限公司 潍坊华纤光电科技有限公司;地址:山东省潍坊市高新技术开发区新华大厦华纤光科 手机:13356778928邮箱3382002310@qq.com 自主知识产权、专业的维修团队、良好的售后、技术服务、提供定制需求,稳定的技术性能,价格远低 于进口产品--性价比秒杀进口同等产品。 企业以海大、东南、山大研发团队为核心,致力于光纤预处理设备与光纤通信检测仪表国产化开发。打 破进口仪表长期垄断,联合高校进行自主产权的开发,致力于做好产品、好服务,提升产品的影响力,与 国际品牌竞争。合作单位:中国海洋大学、山东大学、东南大学、南航、航天十三所、山东科学院激光所、 浙江大学、深大、哈工大、中电41所等高校及科研院所,品质值得信赖。 潍坊华纤光电科技有限公司.(huaxianoptoelectronictechnologyco.ltd).
文辑推荐
知识推荐
百科推荐
职位:装饰装修工程师
擅长专业:土建 安装 装饰 市政 园林