Y-TZP/板状氧化铝复相陶瓷的低温时效行为
通过X射线衍射仪和扫描电子显微镜研究了Y-TZP/板状氧化铝复相陶瓷在氢氧化钠碱性溶液中的低温(60~120℃)时效行为,并对时效后的复相陶瓷进行了抗弯强度和断裂韧度测试。结果表明:在时效过程中该复相陶瓷表面发生了氧化锆从四方相向单斜相的转变;相转变量随着时效温度和溶液pH值的升高而增加;时效使该复相陶瓷的抗弯强度略有下降,但是其断裂韧度基本保持不变。
氧化铝陶瓷的低温烧结技术
氧化铝陶瓷的低温烧结技术 氧化铝陶瓷是一种以al2o3为主要原料,以刚玉(α—al 2o3)为主晶相的陶瓷材料。因其具有机械强度高、硬度大、高频 介电损耗小、高温绝缘电阻高、耐化学腐蚀性和导热性良好等优良综 合技术性能,以及原料来源广、价格相对便宜、加工制造技术较为成 熟等优势,氧化铝陶瓷已被广泛应用于电子、电器、机械、化工、纺 织、汽车、冶金和航空航天等行业,成为目前世界上用量最大的氧化 物陶瓷材料。然而,由于氧化铝熔点高达2050℃,导致氧化铝陶 瓷的烧结温度普遍较高(参见表一中标准烧结温度),从而使得氧化 铝陶瓷的制造需要使用高温发热体或高质量的燃料以及高级耐火材 料作窑炉和窑具,这在一定程度上限制了它的生产和更广泛的应用。 因此,降低氧化铝陶瓷的烧结温度,降低能耗,缩短烧成周期,减少 窑炉和窑具损耗,从而降低生产成本,一直是企业所关心和急需解决 的重要课题。 目前,对氧化铝
氧化铝陶瓷及相关陶瓷
氧化铝陶瓷及相关陶瓷
铝和氧化铝的润湿性及氧化铝陶瓷敷铝基板
随着大功率模块与电力电子器件的发展,陶瓷表面金属化已得到广泛应用。直接敷铝技术是基于氧化铝陶瓷基板发展起来的一种陶瓷表面金属化技术。在介绍直接敷铝基板的制备方法和性能特点的基础上,重点讨论影响al-al2o3润湿性能的因素以及这些因素对氧化铝陶瓷基板敷铝过程的影响,同时展望了dab基板在功率电子系统、汽车工业等方面的应用前景。
氧化铝陶瓷基板工艺研究
本文主要介绍了流延法生产氧化铝陶瓷基板的工艺。研究了原料粒度分布对基板微观结构的影响,用流延法制备了96%氧化铝陶瓷基板,并对基板表面被釉,试验了基板的性能,研究了基板生产过程中一些关键的因素。
造纸用氧化铝陶瓷锥形除渣器的研制与磨损行为
用氧化铝陶瓷制作造纸工业锥形除渣器中关键且最易磨损的锥体部件,其高耐磨蚀性和低摩擦光滑内壁使其在正常运行时寿命可达7~9年。在协调除渣系统各部件使用寿命、稳定整个除渣系统工作效率和降低动力能耗方面它起到决定性作用。磨损分析结果表明:经4年除渣运行后,陶瓷锥体内面上段开始出现鱼鳞状磨蚀凹坑、下段出现螺旋线磨痕麻点和锥体出口轻度变形。锥体内面的磨损主要是渣粒冲刷切削摩擦、纸浆腐蚀和疲劳等3种磨损机理共同作用的结果,其中引发磨损和严重磨损的地方位于耐磨蚀性较差的晶界玻璃相和有应力集中现象的孔隙处。
氧化铝泡沫陶瓷的制备
氧化铝泡沫陶瓷的制备
Y-TZP/氧化铝(板晶)复相陶瓷的砂浆冲蚀磨损
以带有玻璃涂层的氧化铝微粉、小尺寸板晶(样板晶)和钇稳定四方氧化锆(3y-tzp)微粉为原料,在常压下通过样板晶生长制备了氧化铝板晶体积分数为50%的y-tzp/氧化铝(板晶)复相陶瓷。采用砂浆喷射装置,砂浆流速为10~40m/s,冲击角为90°~15°,对比研究了该复相陶瓷和3y-tzp陶瓷的砂浆冲蚀磨损。结果表明,2种材料的磨损率在75°~60°之间均出现最大值。磨损率大小受到材料自身硬度的影响,磨损率值随着砂浆流速的增加而增加。
氧化铝陶瓷及相关陶瓷PPT课件
氧化铝陶瓷及相关陶瓷PPT课件
氧化铝陶瓷制作工艺简介
氧化铝陶瓷制作工艺简介 氧化铝陶瓷目前分为高纯型与普通型两种。高纯型氧化铝陶瓷系al2o3 含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650—1990℃, 透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐 碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。 普通型氧化铝陶瓷系按al2o3含量不同分为99瓷、95瓷、90瓷、85 瓷等品种,有时al2o3含量在80%或75%者也划为普通氧化铝陶瓷系 列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶 瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;8 5瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属 封接,有的用作电真空装置器件。其制作工艺如下: 一粉体制备: 将入厂的氧化铝粉按照不同的产品要求与不同成型工艺制
浅析氧化铝陶瓷制作工艺
浅析氧化铝陶瓷制作工艺
氧化铝陶瓷内衬复合钢管在稀相气力输送中的应用
本文简述了目前电解铝厂普遍采用普通钢管用于稀相输送的状况。同时根据氧化铝陶瓷内衬复合钢管的性能以及在气力输送方面的实际运用,认为采用氧化铝陶瓷内衬复合钢管代替普通钢管能大大提高管路的寿命,降低输送系统的运行和维护成本,有很高的实用价值。
氧化铝陶瓷片的散热原理是什么
1 氧化铝陶瓷片的散热原理是什么 氧化铝陶瓷片制品是目前应用较广泛的一种新型精密陶瓷、电子工业陶瓷 片、功能陶瓷产品。由于氧化铝陶瓷片原料昂贵和形成工艺的特殊性,目前氧化 铝陶瓷片主要用于高技术,如冶金、化工、电子、国防、航天及核技术等高科技 领域。 氧化铝陶瓷片属于特种陶瓷,具有高强度、高硬度、抗磨损、耐腐蚀、耐高 温、绝缘等优异特性,备受多种行业关注,在集成电路芯片和航空光元器件等方 面拥有其他导热绝缘材料无法比拟的优势。 目前,市场对氧化铝陶瓷散热片的需求日益增大,在暖气片散热原理大受追 捧的同时,也催生了散热片原理公司的快速发展。散热片的原理等一系列相关经 营的公司应运而生,并得到了迅猛的发展。 接下来就让小编带你来看看导热绝缘材料的相关情况吧~带你了解导热绝缘 材料~ 氧化铝陶瓷在整个陶瓷行业中的应用较为广泛,在性能上也属于非常优越。 其导热、绝缘、散热已是基本
氧化铝泡沫多孔陶瓷的制备
通过采用一种具有三维网状结构和联通气孔的聚氨酯有机泡沫为模板制备氧化铝多孔陶瓷。主要研究了烧成温度,保温时间以及球磨时间对氧化铝泡沫陶瓷性能的影响。实验结果表明:当浆料配方组成为氧化铝75.8%、龙岩高岭17.8%、膨润土2.6%、滑石粉3.6%,在1600℃,保温2h和球磨2h,烧后样品的强度最好,其主要晶相组成是α-al2o3和莫来石。
非对称氧化铝陶瓷膜微滤管的制备
本实验采用固态粒子烧结法和溶胶-凝胶法,在以α-al2o3为主要原料的圆形多通道管式陶瓷支撑体上成功地制备出了性能良好al2o3非对称复合陶瓷膜微滤管。通过sem、epma分析,微滤陶瓷管膜层表面中有均布的气孔、窄的孔径分布。并探讨了挤出工艺制度、镀膜工艺制度、热处理制度对制备非对称陶瓷膜微滤管性能的影响。
钠硫电池用β″--氧化铝陶瓷的研制
β″-al2o3陶瓷在钠硫电池中,兼具固体电解质和隔膜功能,其电阻对钠硫电池的性能影响很大。以氧化铝室的异丙醇悬浊液为电泳液,添加不同量的17-99号pva作为成膜助剂,在30v的电压条件下电泳沉积4min,在1580℃下烧结10min制得β″-al2o3陶瓷。结果表明pva用量(质量分数)为0.3%时制得的β″-al2o3结构紧密、电导率最优。
黑色氧化铝陶瓷制备与介电性能的研究
采用正交试验法对黑色氧化铝陶瓷实验配方进行优化;采用一次、二次合成法分别制备了黑色氧化铝陶瓷;对黑色氧化铝陶瓷进行了xrd物相分析、烧结体断面sem分析,测试了烧结体的体积密度、体积电阻率、介电常数和介电损耗。结果表明,黑色氧化铝陶瓷最佳配方为:al2o391wt.%、滑石2.0wt.%、fe2o33wt.%、coo0.5wt.%、nio1wt.%、mno22.5wt.%;一次、二次合成法制备的黑色氧化铝陶瓷的体积密度分别为3.71g/cm3、3.69g/cm3,体积电阻率分别为6.8×1012ω·cm、7.1×1012ω·cm,介电常数分别为18.6、18.8,介电损耗分别为0.015、0.014。
四方氧化锆多晶/氧化铝(板晶)复相陶瓷的摩擦磨损性能研究
以表面包裹玻璃涂层的氧化铝微粉、小尺寸样板晶以及钇稳定四方氧化锆(y-tzp)微粉为原料,在常压下通过样板晶生长制备氧化铝样板晶体积分数为50%的y-tzp/板状氧化铝复相陶瓷,采用机油为润滑剂对比研究了复相陶瓷和3y-tzp陶瓷在不同载荷下的摩擦磨损性能,采用扫描电子显微镜和x射线衍射仪观察分析试样磨损表面形貌及其相组成.结果表明,在载荷400n时,3y-tzp陶瓷出现摩擦系数和磨损率突变.在磨损突变前,3y-tzp陶瓷的磨损机理为塑性变形、耕犁和微裂纹,在磨损突变后则以微断裂和晶粒拔出为主.复相陶瓷在试验载荷(100~700n)条件下没有出现磨损突变.与3y-tzp陶瓷相比,在相同载荷下,复相陶瓷的磨损率较低.这是因为复相陶瓷中的氧化铝板晶在三维空间形成了网络骨架,氧化铝样板晶固有的高弹性模量和高热导率抑制了氧化锆马氏体相变,为摩擦热的散失提供了导热通道.
陶瓷金卤灯发展的关键——多晶氧化铝陶瓷泡壳(上)
本文简述了陶瓷金卤灯的特征特性,分析了灯对陶瓷材料的要求,对比了某些陶瓷材料的结构成分及对陶瓷灯的影响,对国产陶瓷材料及泡壳进行了分析研究并给出了部分分析结果。
从基材性能告诉你氮化铝和氧化铝陶瓷基板工艺有什么不同
从基材性能告诉你氮化铝和氧化铝陶瓷基 板工艺有什么不同 氮化铝陶瓷基板和氧化铝陶瓷基板都同属于陶瓷基板,他们的制作工艺大致是一样 的,都有都才可以采用薄膜工艺和厚膜工艺,dbc工艺、htcc工艺和ltcc工艺,那 么不同的什么呢? 氮化铝和氧化铝陶瓷基板工艺的不同主要是因为基材的性能和结构决定了,他们 烧结温度的不同。 氮化铝陶瓷基板的结构和性能原理: 1、氮化铝陶瓷(aluminiumnitrideceramic)是以氮化铝(ain)为主晶相的陶瓷。 2、ain晶体以〔ain4〕四面体为结构单元共价键化合物,具有纤锌矿型结构,属 六方晶系。 3、化学组成ai65.81%,n34.19%,比重3.261g/cm3,白色或灰白色,单晶 无色透明,常压下的升华分解温度为2450℃。 4、为一种高温耐热材料。热膨胀系数(4.0-6.0)x10(-6)
以冰为模板制备氧化铝多孔陶瓷及其结构特征
以水玻璃溶液为粘结剂,以冰为造孔模板制备氧化铝多孔陶瓷。采用扫描电镜观测多孔陶瓷的显微结构。结果表明,冰是一种理想的造孔模板,浆体特性对多孔陶瓷结构影响较大,当浆体中相对固相含量增大,多孔陶瓷的孔隙会减小;当浆体粘度降低,易得到片层状与微孔复合结构的多孔陶瓷。
氧化铝质多孔陶瓷制备工艺及应用
氧化铝质多孔陶瓷制备工艺及应用
氧化铝陶瓷片详细资料
广州昂泰电子有限公司 __________________________________ 氧化铝陶瓷片性能参数表 项目单位氧化铝96%a12o3 密度g/cm333.92 吸水率%0 热膨胀系数10-6/k8.5 杨氏弹性模量gpa340 泊松比/0.22 硬度(hv)mpa1650 弯曲强度(室温)mpa310 弯曲强度(700°c)mpa230 抗压强度(室温)mpa2200 断裂韧性mpa'm??4.2 导热率(室温)w/m.k25 绝缘强度kv/mm10 热敏抗阻k/w0.3 长期工作温度(℃)1480 比电阻率ω?mm2/m>1016 最高使用温度(无载荷)°c1750 耐酸碱腐蚀性能/强 耐火度°c2000
热喷涂氧化铝陶瓷涂层失效分析及对策
热喷涂氧化铝涂层技术被大量应用在纺织机械行业,而其结构特点决定了这种涂层塑形变形能力差,对应力集中和裂纹敏感。本文通过对氧化铝涂层常见失效形式进行分析,并提出对策,以期提高工件使用寿命、减少生产成本。
文辑推荐
知识推荐
百科推荐
职位:岩土工程技术副总工
擅长专业:土建 安装 装饰 市政 园林