造价通
更新时间:2025.01.25
关于圆锥的数学日记

格式:pdf

大小:8KB

页数: 1页

关于圆锥的数学日记 学习了圆柱和圆锥的体积之后, 我发现有部分学生基本 “晕”过去,分不清东南西北。为 什么这样说呢?因为圆柱和圆锥是两个既有联系又有区别的立体图形, 而且考察学生的想象 能力和空间能力。 在本节课的学习中,有的学生收获不少,而有的学生收获甚少。主要是: 1、自身素质 不同,基础知识掌握情况不同。 2、上课不认真听讲。两个原因造成的。问题主要表现在: 1、审题不清。 例如:一个圆锥的底面积是 12.56 平方分米,高是 3 厘米,求它的体积是多少?该 题是一个圆锥,而算成了圆柱,忘记乘 1/3 ;并且单位也不统一,还需转化单位,统一单 位。 2 、关系混淆。 等底等高,圆柱的体积是圆锥体积的 3 倍。 等底等体积,圆锥的高是圆柱高的 3 倍。 等高等体积,圆锥的底面积是圆柱的 3 倍。 因此,针对以上问题, 我认为关键是认真对待, 审清题意要求, 背下关系, 加强练习。 这

圆锥曲线的中地取值范围最值问题

格式:pdf

大小:516KB

页数: 15页

实用标准文案 精彩文档 圆锥曲线中的最值取值范围问题 90.已知 1 2,F F 分别是双曲线 22 2 2 x y a b =l( a>0,b>0)的左、右焦点, P为双曲线上的一点, 若 0 1 2 90F PF , 且 21PFF 的三边长成等差数列. 又一椭圆的中心在原点, 短轴的 一个端点到其右焦点的距离为 3 ,双曲线与该椭圆离心率之积为 5 6 3 。 ( I )求椭圆的方程; (Ⅱ)设直线 l 与椭圆交于 A,B两点,坐标原点 O到直线 l 的距离为 3 2 ,求△ AOB面 积的最大值. 90.解:设 nPFmPF ||,|| 21 ,不妨 P在第一象限,则由已知得 ,065 .22 ,)2( ,2 22222 caca mcn cnm anm ,0562 ee 解得 15 ee 或 (舍去)。设椭圆离心率为 . 3 65 5, ee 则 . 3 6 e 可设椭圆的方程为

最新知识

圆锥母线
点击加载更多>>
专题概述
圆锥母线相关专题

分类检索: