造价通
更新时间:2024.12.01
截面惯性矩的计算

格式:pdf

大小:14KB

页数: 2页

两构件惯性 中心间距 X(cm) 单位长度重量 G1(kg/m) 截面积S1 (cm2) 惯性矩 I 1(cm 4 ) 单位长度重量 G2(kg/m) 截面积S2 (cm2) 惯性矩 I 2(cm 4 ) 偏心距 X1(cm) 2.75 1.9625 2.5 5.2083 5.8875 7.5 0.15625 2.0625 15 20 200 6666.67 10 100 833.333 5 4.28 51.522 65.024 1207.36 11.775 15 0.45 0.7962 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 两构件合二为一后,惯性矩的合并的计算 偏心距 X2 (cm) 合并后惯性 中心的惯性 矩I0(cm 4 ) 0.6875 19.5442375 10 22500 3.483801

截面惯性矩计算

格式:pdf

大小:251KB

页数: 5页

截面的几何性质 15-1(I-8) 试求图示三角形截面对通过顶点 A并平行于底边 BC的 轴的惯性 矩。 解:已知三角形截面对以 BC边为轴的惯性矩是 ,利用平行轴定理,可求得 截面对形心轴 的惯性矩 所以 再次应用平行轴定理,得 返回 15-2(I-9) 试求图示 的半圆形截面对于轴 的惯性矩,其中轴 与半圆 形的底边平行,相距 1 m。 面对其底边的惯性矩是 ,用解:知半圆形截 平行轴定理得截面对形心轴 的惯性矩 再用平行轴定理,得截面对轴 的惯性矩 返回 15-3(I-10) 试求图示组合截面对于形心轴 的惯性矩。 解:由于三圆直径相等,并两两相切。它们的圆心构成一个边长为 的等边三 角形。该等边三角形的形心就是组合截面的形心, 因此下面两个圆的圆心, 到形 心轴 的距离是 上面一个圆的圆心到 轴的距离是 。 利用平行轴定理,得组合截面对 轴的惯性矩如下: 返回 15-4(I-

精华知识

焊缝 惯性矩

最新知识

焊缝 惯性矩
点击加载更多>>
焊缝 惯性矩相关专题

分类检索: