造价通
更新时间:2025.02.15
基于地面高光谱数据的油茶炭疽病病情指数反演

格式:pdf

大小:385KB

页数:

使用FieldSpec HandHeldTM地物光谱仪采集不同发病程度的油茶冠层光谱数据,并实地调查油茶炭疽病病情指数,将光谱数据进行一阶微分与滑动平均滤波相结合的预处理,提取与病情指数相关性较高的敏感波段,并采用主成分分析法(principal component analysis,PCA)对敏感波段的光谱数据进行降维,分别以敏感波段和PCA降维处理后的敏感波段作为输入变量建立了病情指数的BP神经网络反演模型。两种建模方法建立的BP神经网络模型计算出的预测值与观测值之间的决定系数(R2)均达99%以上。精度检验证明,以PCA降维所得到的前10个主成分作为输入变量建立的10-7-1三层BP神经网络模型预测精度更高,模型计算出的预测值与观测值之间的决定系数(R2)和均方根误差(RMSE)分别为0.998 6和0.814 8。该研究表明,利用地面高光谱数据结合主成分分析和BP神经网络算法反演油茶炭疽病病情指数是一种有效的方法。

冬小麦叶面积指数的高光谱估算模型研究

格式:pdf

大小:232KB

页数:

本文以山东禹城为研究区,利用地面实测光谱数据,探讨不同植被指数和红边参数建立高光谱模型反演冬小麦叶面积指数的精度。通过逐波段分析计算了4种植被指数(NDVI、RVI、SAVI、EVI),结合同步观测LAI数据,确定反演叶面积指数的最优波段;计算了5种常用的高光谱植被指数MCARI、MCARI2、OSAVI、MTVI2、MSAVI2,同时利用4种常用方法计算红边位置和红谷,与实测LAI进行回归分析,比较植被指数和红边参数模型对冬小麦LAI的估测精度。结果表明各因子与LAI均具有较高的相关性,整个研究区归一化植被指数具有最高的反演精度,确定了估算冬小麦LAI的最优模型,并使用独立的LAI观测数据对模型进行了验证。

精华知识

高光谱植被指数

最新知识

高光谱植被指数
点击加载更多>>
专题概述
高光谱植被指数相关专题

分类检索: