提出了一种基于云模型的电力负荷预测模型.利用云模型中的云发生器,分别将有限的国民生产总值和工业生产总值的增长率和增长变化率样本数据空间扩充为更具随机性和普遍性的扩展样本数据.以国民生产总值为例,建立国民生产总值与电力负荷之间的规则推理,构造云规则推理器.利用云规则推理器获得电力负荷预测增长率,将国民生产总值和工业生产总值获得的电力负荷预测增长率进行加权平均,并换算得到最终的电力负荷预测值,获得的预测结果精度高.
准确预测空调负荷不仅对蓄能空调高效运行意义重大,而且也是冷热电三联产技术发挥优势的关键所在。本文提出一种小波网络应用于空调负荷的预测模型,通过小波分解,把空调负荷序列分解为不同频段的小波系数序列,再将各层的小波系数子序列重构到原尺度上,然后对小波系数序列采用相匹配的BP神经网络模型进行预测,最后合成空调负荷序列的最终预测结果。该预测模型中的低频小波系数a3和中频小波系数d3的神经网络输入变量为前1天小波系数值和对应时刻的温度、相对湿度、风速、总辐射量、天气状况和星期几编码共7个因子,并采用主成分分析法进行输入变量的降维;高频小波系数d2和d1以前几日的小波系数为输入因子。经过对西安市某综合楼的空调负荷进行预测,证明了预测值和实际运行值拟和很好,相对误差为-10%~8%。该预测模型具有预测精度较高、推广能力较强及计算速度较快的优点。