在气液鼓泡塔中,由于传递性能的优劣决定于气泡运动的状况,因此,由要了解气泡的大小、气泡生长及运动的规律,以了解液相内的气含量及气液相界面状况,从而掌握气液相间的传质、传热和因气泡运动引起的液相纵向返混问题。气体在液体中的溶解速率和其分散程度有关,分散程度愈高,溶解速度愈大。分散程度可用气泡的平均直径、气体的滞留量或比表面表示。
鼓泡塔的流动状态可分为三个区域:
安静鼓泡区
在该区域内表现气速低于0.05m/s ,气泡呈分散状态,大小均匀,进行有秩序的鼓泡,液体搅动微弱,可称为视均相流动区域。
湍流鼓泡
该区域表观气速较高,塔内气液剧烈无定向搅动,呈现极大的液相返混。部分气泡凝聚成大气泡,气体以大气泡和小气泡两种形态与液体接触,大气泡上升速度较快,停留时间较短,小气泡上升速度较慢,停留时间较长,因此,形成不均匀接触的流动状态,称为剧烈扰动的湍流鼓泡区,或称为不均匀湍流鼓泡区。
栓塞气泡流动区
在d <0.15m 的小在径气泡塔中,在较高表现气速下,由于大气泡在径被器壁所限制,而出现了栓塞气泡流动状态。工业鼓泡塔的操作常处于安静区和揣流区两种流动状态中, 一般应保持在均匀流动的安静区才为合理。但当气通挝增加时,原有小气泡的一部分发生凝聚,形成大气泡,获得较大的浮升速度,而掏成了不均匀流动的揣流区,致使流动条件由安静区向揣流区转化。此时液体产生较大的循环速度,在塔的中部,液体随气泡夹带上升,而在近塔壁处,液体则回流向下。
鼓泡塔的优点是气相高度分散在液相中,因此有大的持液量和相际接触表面,使传质和传热的效率较高,它适用于缓慢化学反应和强放热情况。同时反应器结构简单、操作稳定、投资和维修费用低、液体滞留量大,因而反应时间长。但液相有较大返混,当高径比大时,气泡合并速度增加,使相际接触面积减小。
按结构特征,鼓泡塔可分为空心式、多段式、汽提式三种,其中空心式鼓泡塔最适用于反应在液相主体中进行的缓慢化学反应系统,或伴有大量热效应的反应系统。当热效应较大时,可在塔内或塔外装置热交换单元,使之变为具有热交换单元的鼓泡塔。为避免塔中的破相返混,当高径比较大时,常采用多段式塔借以保证反应效果。为适应气液通量大的要求或减小气泡凝聚以适用于高薪性液体,使气体提升式鼓泡反应器得到应用,它具有均匀的径向气液流动速度、轴向分散系数较低、传热系数较大、液体循环速度可调节等优点。
压缩系数中的1/V表示压缩系数是指流体单位体积的压缩程度。取单位体积的压缩程度才能反映不同流体或相同流体在不同外界环境下被压缩的真实程度。比如,一亿升的空气被压缩了2升的体积和10升空气被压缩了1升,...
《流体力学与水泵实验教程》结合环境、给排水、建筑、土木、机械、采矿、交通等专业的流体力学、水力学及水泵与水泵站课程的教学要求,按照各专业最新的实验教学大纲编写。内容包括流体静力学实验,不可压缩流体恒定...
周谟仁主编,《流体力学泵与风机》,中国建筑工业出版社出版 付祥钊主编,《流体输配管网》,中国建筑工业出版社出版 蔡增基主编,《流体力学泵与风机》第5版 那你可查看: 陈耀宗、姜文源等主编的《建筑给水排...
鼓泡塔是一种常用的气液接触反应设备,各种有机化合物的氧化反应,如乙烯氧化生成醛、乙醛氧化生成乙酸或乙酸酐、环己醇氧化生成己二酸、环己烷氧化生成环己醇和环己酮、石蜡和芳烃的氯化反应等等反应都采用鼓泡塔。鼓泡塔的优点是气相高度分散在液相中,因此有大的持液量和相际接触表面,使传质和传热的效率较高,它适用于缓慢化学反应和强放热情况。按结构特征,鼓泡塔可分为空心式、多段式、汽提式三种。
鼓泡塔原理就是烟气通过多个管道分散后直接导入吸收塔的浆液池中,一定压力的烟气冲击浆液,产生大量气泡,气液混合接触,在混合和翻腾的过程中烟气中的二氧化硫被浆液吸收,经吸收后的气泡汇聚排出吸收塔,该塔结构复杂,塔的高度相对较低,但吸收塔本体占地大,阻力大。
工程流体力学论文 丹尼尔·伯努利,(Daniel Bernoulli 1700~1782)瑞士物理学家、 数学家、医学家。 1700年 2月 8日生于荷兰格罗宁根。著名的伯努 利家族中最杰出的一位。他是数学家 J.伯努利的次子,和他的父辈 一样,违背家长要他经商的愿望,坚持学医,他曾在海得尔贝格、斯 脱思堡和巴塞尔等大学学习哲学、论理学、医学。 1721年取得医学 硕士学位。努利在 25岁时 (1725) 就应聘为圣彼得堡科学院的数学院 士。8 年后回到瑞士的巴塞尔,先任解剖学教授,后任动力学教授, 1750年成为物理学教授。在 1725~1749年间,伯努利曾十次荣获法 国科学院的年度奖。 丹尼尔受父兄影响,一直很喜欢数学。 1724年,他在威尼斯旅途 中发表《数学练习》,引起学术界关注,并被邀请到圣彼得堡科学院 工作。同年,他还用变量分离法解决了微分方程中的里卡提方程。 在伯努利家族中
离心通风机气体流动的流体力学分析 摘要 :本文从流体力学的角度进行了详尽的分析研究,介绍了风机的选型对抽风 量的影响,探讨了管路系统中的摩擦阻力、局部阻力、风管直径大小、弯头的曲 率半径等对风量风压的影响; 同时介绍了离心风机特性、 抽风系统的管网特性, 管网中实际阻力与风机额定风压及风量的关系;应用计算流体力学软件 FLUENT 对 4-73 №10D离心式通风机内部的三维气体流动进行了数值模拟分析,重点分 析了各个部分的压强和速度分布。 关键词: 管网特性;离心式通风机;三维数值模拟;压力场;流场 1 引言 由于通风机流场的试验测量存在许多难, 使得数值模拟成为研究叶轮机械流 场的一种重要手段。 随着计算流体力学和计算机的快速发展, 流体机械的内部流 场研究有了很大的进展,从二维、准三维流动发展到全三维流动。 Guo 和 Kim 用定常和非定常的三维 RANS 方法分析了前向离心通
气体以鼓泡的形式连续通过液相,具有较大的液体持有量、较高的传质效率、大长径比的气液反应设备。
【学员问题】泡沫塔的除尘器?
【解答】泡沫塔除尘器又称泡沫洗涤器。简称泡沫塔。在泡沫设备中与气体相互作用的液体,呈运动着的泡沫状态,使气液之间有很大的接触面积,尽可能地增强气液两相的湍流程度,保证气液两相接触表面有效的更新,达到高效净化气体中尘、烟、雾的目的。可分为溢流式和淋降式两种。在圆筒型溢流式泡沫塔内,设有一块和多块多孔筛板,洗涤液加到顶层塔板上,并保持一定的原始液层,多余液体沿水平方向横流过塔板后进入溢流管。待净化的气体从塔的下部导入,均匀穿过塔板上的小孔而分散于液体中,鼓泡而出时产生大量泡沫。泡沫塔的效率,包括传热、传质及除尘效率,主要取决于泡沫层的高度和泡沫形成的状况。气体速度较小时,鼓泡层是主要的,泡沫层高度很小;增加气体速度,鼓泡层高度便逐渐减少,而泡沫层高度增加;气体速度进一步提高,鼓泡层便趋于消失,全部液体几乎全处在泡沫状态;气体速度继续提高,则烟雾层高度显著增加,机械夹带现象严重,对传质产生不良影响。一般除尘过程,气体最适宜的操作速度范围为1.8~2.8m/s.当泡沫层高度为30mm时,除尘效率为95~99%;当泡沫层高度增至120mm时,除尘效率为99.5%.压力损失为600~800Pa.
以上内容均根据学员实际工作中遇到的问题整理而成,供参考,如有问题请及时沟通、指正。
众所周知,流化床锅炉分为两大类:鼓泡流化床锅炉和循环流化床锅炉。鼓泡流化床锅炉密相区的燃烧份额大,需布置埋管受热面以吸收燃烧释放的热量。埋管的传热系数高达220-270kW/(m2·℃),比循环流化床锅炉炉膛稀相区膜式壁受热面的200kW/(m2·℃)高。尽管鼓泡流化床锅炉稀相区膜式壁受热面的传热系数非常低,但因稀相区的吸热量所占份额较小,总的来说,对于容量较小的锅炉,鼓泡流化床锅炉结构受热面的钢耗量要小一些。鼓泡流化床锅炉中,燃烧主要发生在密相区,给煤的平均粒径大,煤破碎设备较为简单,电耗低。流化速度低,细煤粒在稀相区停留时间长,炉膛也可以设计得较低。虽然埋管有一定的磨损,但如防磨损处理得好,一般可用3~5年。采用飞灰再循环,鼓泡流化床锅炉的燃烧效率在燃烧高反应活性煤种时也能达到较高的水平,如在炉膛出口安装分离器实现热态飞灰再循环,有时可达98~99%,但此时分离器的目的主要是为了提高燃烧效率,而不是像循环流化床锅炉主要为了改变炉内的气固流动状态进而改变燃烧、传热机理。
循环流化床锅炉的截面热负荷是鼓泡流化床锅炉的2倍左右,利于大型化。由炉膛、分离器和返料阀构成的主循环回路中各处温度均匀。由于其燃烧气氛处于还原性,NOx原始生成浓度低,一般不超过200mg/m3。主循环回路中温度均匀控制在脱硫最佳温度区间,快速床状态下存在颗粒团聚及返混,使得石灰石停留时间增长,与SO2充分接触,石灰石脱硫效率高,在Ca/S为2左右时,脱硫效率可达90%以上,甚至99%,气体污染物排放低。同时没有经历熔融的灰颗粒具有丰富的孔隙结构,对重金属、SO3等有很强的吸附作用,对其他污染物的控制效果也较好。较长的停留时间,实现了更高的燃烧效率(可达99%以上)。但由于气固两相流动达到快速床状态要求的炉膛最低高度不能低于15m,导致低于35t/h容量的锅炉采用循环流化床并无明显优势,因而35t/h及以下容量采用鼓泡流化床燃烧更加合理。
我国在过去许多年中,建造了近3000台鼓泡流化床锅炉(俗称沸腾炉),虽然在燃烧劣质煤方面发挥了极大的作用,但普遍性能不佳。循环流化床锅炉出现之后,借鉴循环流化床的经验,对鼓泡流化床锅炉进行了改进,取得了显著进步。经过二十多年的自助研发,我国在循环流化床燃烧技术上取得了长足的进步,突破了国际上对我国的技术封锁,通过系统深入的研究和广泛的实践,成功建立了我国自己的循环流化床锅炉设计技术体系,开发了系列的循环流化床锅炉设备,燃烧的燃料涵盖无烟煤、贫煤、烟煤、褐煤、石油焦、煤矸石、煤泥、生物质、工业废弃物、城市垃圾等,蒸汽参数从次中温次中压、中温中压、次高温次高压、高温高压、超高压一次再热、亚临界甚至超临界,容量涵盖6MW到660MW。近年来,中国在循环流化床的节能、原始超低排放方面,又取得了国际关注的进步。通过流态重构,显著的降低了循环流化床锅炉的厂用电率、提高了可靠性,达到了相同容量煤粉炉的水平,并深度挖掘了循环流化床燃烧的低排放潜力,超越了对循环流化床燃烧的传统认识,进一步促进了循环流化床锅炉的健康发展。