高炉生产中高炉炉顶煤气成份是直接反映冶炼过程的状态参数,是高炉操作调节负荷的主要依据,同时反映冶炼过程煤气利用情况,对高炉负荷平衡致关重要。因此,国内外高炉冶炼生产都想及时了解掌握高炉炉顶煤气成分,以获取最佳的技术经济指标,指导高炉生产。高炉煤气成分中CO、CO2和H2的成分含量是三个最重要的参数,通过分析这三个参数,可以准确地判断炉况。
提高煤气利用率,是降低综合燃料比,降低生铁成本,提高出铁率的的重要途径。据国外经验,煤气利用率每增加1%,每吨铁就能降低8公斤的焦炭耗量,并且铁水的收得率增加3.5%。国内也有直接用CO2的含量间接表示煤气利用率的方法。国内相关数据是:高炉煤气中C02%每提高1%,焦比降低20Kg/t,炼铁工序能耗下降17kgce/t。
由于高炉炉顶煤气杂质含量高,成分复杂,高炉炉顶煤气在线分析系统是否能够正常运行,样气预处理技术是关键。高炉炉顶荒煤气中含有铁粉、矿石、焦炭、石灰等固体颗粒物,同时还含有一定的水分、硫等。当这些粉尘和冷凝后的水分混合后,极易形成致密的像混凝土一样坚硬的物质,极难处理。针对这种情况,最新的技术是采用“海绵合金过滤器”、“水稀释处理法”,以及“多级过滤、就地排放”的预处理方法。 其中最核心的技术是“海绵合金过滤器”。
高炉生产中高炉炉顶煤气成份是直接反映冶炼过程的状态参数,是高炉操作调节负荷的主要依据,同时反映冶炼过程煤气利用情况,对高炉负荷平衡致关重要。因此,国内外高炉冶炼生产都想及时了解掌握高炉炉顶煤气成分,以...
很多,无料钟炉顶,有上料罐,下料罐,上料闸,下料闸,上密封阀,下密封阀,炉顶消音器,旋风除尘器,炉顶放散阀,布料溜槽等。
高炉和转炉煤气的理化性质和危险特性一、高炉煤气的理化性质和危险特性:1、高炉煤气的理化性能主要取决于煤气的成份,不同成份的煤气性质不同,易燃易爆、易中毒是煤气的三大特性。中毒、着火、爆炸通常称为煤气三...
1.分级过滤、分级俘获、就地处理;
2.水稀释处理法;
3.强大的排水能力;
4.防尘、防水功能的取样探头;
5、高效的精密过滤装置;
6、旁路加速,大流量取样;
7、智能控制系统;
高炉炉顶煤气在线分析系统在高炉生产实践中对提高煤气利用率,提高出铁率降低具有重要作用。而采用适当的预处理技术,是保证系统长期稳定工作的关键。 2100433B
高炉炉顶煤气成分是直接反映高炉冶炼过程的状态参数,对高炉正常生产起着至关重要的作用,而炉顶煤气分析系统是保证测量准确性和及时性的前提。文章介绍了高炉炉顶煤气分析系统在玉钢3#高炉中的应用,以及应用以来在实际生产中存在的问题,提出了优化改造的措施,实现了高炉炉顶煤气取样点、煤气成分及煤气利用率的实时检测,对操作者及时了解炉内工况、优化操作提高了强有力的数据支撑。
高炉煤气、转炉煤气和焦炉煤气的区别? 冶金企业 一、高炉煤气 (高炉炼铁,转炉炼钢) 高压鼓风机鼓风, 并且通过热风炉加热后进入了高炉, 这种热风和焦炭助燃, 产 生的是 CO2和 CO,CO2又和炙热的焦炭产生 CO,CO在上升的过程中,还原了铁矿石中的铁 元素,使之成为生铁,这就是炼铁的化学过程。铁水在炉底暂时存留, 定时放出用于直接炼 钢或铸锭。 这时候在高炉的炉气中, 还有大量的过剩的 CO,这种混和气体,就是高炉煤气。 每炼 1 吨铁可产生 2100-2200 立方米的高炉煤气 。 这种含有可燃 CO的气体,是一种低热值的气体燃料,可以用于冶金企业的自用燃气, 如加热热轧的钢锭、预热钢水包等。也可以供给民用,如果能够加入焦炉煤气,就叫做“混 和煤气”,这样就提高了热值。 高炉煤气为炼铁过程中产生的副产品,主要成分为 :CO, C02, N2、H2、CH4等,其中 可燃成分 CO含
干式高炉炉顶余压余热发电,亦称“干式TRT技术”。基于高炉干式除尘系统,利用高炉煤气原有热能和压力来进行发电的工艺。利用高炉炉顶煤气的余压余热,把煤气导入气轮机,使压力能和热能转化为机械能,驱动发电机发电。
BFG是高炉煤气(Blast Furnance Gas)的英文缩写,高炉炼铁过程副产,产率高达吨铁约2000m3;但热值低,CO含量高,毒性较大,以往使用价值较低。
BFG因热值低,常温下燃烧不稳定,理论燃烧温度只有300℃左右。一般工业炉都使用BFG与COG配置的混合煤气。高炉热风炉凭借炉内耐火砖砌体热容量大所形成的高温环境,使单一BFG能够稳定燃烧。如要求获得更高的热风温度,还需要将BFG和助燃空气预热后送热风炉燃烧。复热式炼焦炉使用单一BFG,是将BFG和助燃空气通过蓄热室的格子砖预热到1000℃左右,然后进入燃烧室立火道燃烧,可使炭化室炉墙加热到1100℃以上。
近年来钢厂为节能降耗,纷纷将原先因富余而放散的BFG和LDG送锅炉掺烧,LDG的回收率已有所提高。BFG燃烧降低炉膛辐射传热效果,而且废气量又大。掺烧多了影响锅炉的热效率。2100433B
煤气流速对还原过程、热交换过程,煤气的压头损失以及煤气的分布均有很大影响。特别是随着高炉冶炼的日益强化,煤气流速不断增加,煤气运动问题显得愈来愈重要。为此,人们克服高温,粉尘等困难,采用毕托管、示踪原子、热线风速仪、局部煤气速度计等进行了大量的直接测量研究,并用高炉操作数学模型进行了计算分析,但因高炉内影响煤气流速的因素较多,也较复杂,所以获得的结果都不够准确。尽管如此,从众多的测量结果和数模中还是总结出了一些规律:
(1)高压操作使炉内煤气流速降低,而且流速与CO2%和温度有关,流速高处,煤气温度高,CO2含量低。
(2)用同位素氡、氪85和水银蒸气作示踪原子,测量得到:
由此推算煤气的线速度在2.5~6.8m/s之间。计算结果是固定床空隙度为0.416~0.42的炉料在运动时空隙度达到0.457~0.634,也就是增加了1.09~1.51倍。
(3)生产高炉的炉体半径上煤气分布是不均匀的,中心区煤气流速高。但在半径的任何位置上,从料面向下3~4m处煤气流速都达到最大,而在炉腰附近煤气流速最低,再向下在靠近炉缸处速度又有所增加。